# News

21/09/2018

## Experimental Non-Violation of the Bell Inequality

A finite non-classical framework for qubit physics is described that challenges the conclusion that the Bell Inequality has been shown to have been violated experimentally, even approximately. This framework postulates the primacy of a fractal-like ‘invariant set’ geometry IU in cosmological state space, on which the universe evolves deterministically and causally, and from which space-time and the laws of physics in space-time are emergent. Consistent with the assumed primacy of IU , a non-Euclidean (and hence non-classical) metric gp is defined in cosmological state space. Here, p is a large but finite integer (whose inverse may reflect the weakness of gravity). Points that do not lie on IU are necessarily gp -distant from points that do. gp is related to the p-adic metric of number theory. Using number-theoretic properties of spherical triangles, the Clauser-Horne-Shimony-Holt (CHSH) inequality, whose violation would rule out local realism, is shown to be undefined in this framework. Moreover, the CHSH-like inequalities violated experimentally are shown to be gp -distant from the CHSH inequality. This result fails in the singular limit p=∞ , at which gp is Euclidean and the corresponding model classical. Although Invariant Set Theory is deterministic and locally causal, it is not conspiratorial and does not compromise experimenter free will. The relationship between Invariant Set Theory, Bohmian Theory, The Cellular Automaton Interpretation of Quantum Theory and p-adic Quantum Theory is discussed. View Full-Text / Download Paper

Visit EmQM17 symposium page

**By T. N. Palmer***This abstract belongs to an article of the Special Issue "Emergent Quantum Mechanics – David Bohm Centennial Perspectives"*Visit EmQM17 symposium page

Show more Show less

20/09/2018

## The Montevideo Interpretation of Quantum Mechanics: A Short Review

The Montevideo interpretation of quantum mechanics, which consists of supplementing environmental decoherence with fundamental limitations in measurement stemming from gravity, has been described in several publications. However, some of them appeared before the full picture provided by the interpretation was developed. As such, it can be difficult to get a good understanding via the published literature. Here, we summarize it in a self-contained brief presentation including all its principal elements. View Full-Text / Download Paper

Visit EmQM17 symposium page

**By Rodolfo Gambini and Jorge Pullin***This abstract belongs to an article of the Special Issue "Emergent Quantum Mechanics – David Bohm Centennial Perspectives"*Visit EmQM17 symposium page

Show more Show less

## Spooky Action at a Temporal Distance

Since the discovery of Bell’s theorem, the physics community has come to take seriously the possibility that the universe might contain physical processes which are spatially nonlocal, but there has been no such revolution with regard to the possibility of temporally nonlocal processes. In this article, we argue that the assumption of temporal locality is actively limiting progress in the field of quantum foundations. We investigate the origins of the assumption, arguing that it has arisen for historical and pragmatic reasons rather than good scientific ones, then explain why temporal locality is in tension with relativity and review some recent results which cast doubt on its validity. View Full-Text / Download Paper

Visit EmQM17 symposium page

**By Emily Adlam***This abstract belongs to an article of the Special Issue "Emergent Quantum Mechanics – David Bohm Centennial Perspectives"*Visit EmQM17 symposium page

Show more Show less

## Observables and Unobservables in Quantum Mechanics: How the No-Hidden-Variables Theorems Support the Bohmian Particle Ontology

The paper argues that far from challenging—or even refuting—Bohm’s quantum theory, the no-hidden-variables theorems in fact support the Bohmian ontology for quantum mechanics. The reason is that (i) all measurements come down to position measurements; and (ii) Bohm’s theory provides a clear and coherent explanation of the measurement outcome statistics based on an ontology of particle positions, a law for their evolution and a probability measure linked with that law. What the no-hidden-variables theorems teach us is that (i) one cannot infer the properties that the physical systems possess from observables; and that (ii) measurements, being an interaction like other interactions, change the state of the measured system. View Full-Text / Download Paper

*This abstract belongs to an article of the Special Issue "Emergent Quantum Mechanics – David Bohm Centennial Perspectives"*

Visit EmQM17 symposium page

**By Dustin Lazarovici, Andrea Oldofredi and Michael Esfeld**Visit EmQM17 symposium page

Show more Show less

18/09/2018

## A New Class of Retrocausal Models

Globally-constrained classical fields provide a unexplored framework for modeling quantum phenomena, including apparent particle-like behavior. By allowing controllable constraints on unknown past fields, these models are retrocausal but not retro-signaling, respecting the conventional block universe viewpoint of classical spacetime. Several example models are developed that resolve the most essential problems with using classical electromagnetic fields to explain single-photon phenomena. These models share some similarities with Stochastic Electrodynamics, but without the infinite background energy problem, and with a clear path to explaining entanglement phenomena. Intriguingly, the average intermediate field intensities share a surprising connection with quantum “weak values”, even in the single-photon limit. This new class of models is hoped to guide further research into spacetime-based accounts of weak values, entanglement, and other quantum phenomena. View Text / Download Paper

*This abstract belongs to an article of the Special Issue "Emergent Quantum Mechanics – David Bohm Centennial Perspectives"*

Visit EmQM17 symposium page

**By Ken Wharton**Visit EmQM17 symposium page

Show more Show less

17/09/2018

## On the Explanation of Born-Rule Statistics in the de Broglie-Bohm Pilot-Wave Theory

The de Broglie-Bohm pilot-wave theory promises not only a realistic description of the microscopic world (in particular, a description in which observers and observation play no fundamental role) but also the ability to derive and explain aspects of the quantum formalism that are, instead, (awkwardly and problematically) postulated in orthodox versions of quantum theory. Chief among these are the various “measurement axioms” and in particular the Born rule expressing the probability distribution of measurement outcomes. Compared to other candidate non-orthodox quantum theories, the pilot-wave theory suffers from something of an embarrassment of riches in regard to explaining the Born rule statistics, in the sense that there exist, in the literature, not just one but two rather compelling proposed explanations. This paper is an attempt to critically review and clarify these two competing arguments. We summarize both arguments and also survey some objections that have been given against them. In the end, we suggest that there is somewhat less conflict between the two approaches than existing polemics might suggest, and that indeed elements from both arguments may be combined to provide a unified and fully-compelling explanation, from the postulated dynamical first principles, of the Born rule. View Full-Text / Download Paper
*This abstract belongs to an article of the Special Issue "Emergent Quantum Mechanics – David Bohm Centennial Perspectives"*Visit EmQM17 symposium page

**By Travis Norsen**
Show more Show less