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Paradigms shield themselves against falsification
as part of normal science

Thomas Samuel Kuhn (1922 —1996):

The paradigm determines how you see
the facts! The Structure of Scientific Revolutions



Strong vs Weak emergence

« Strong emergence: higher levels have causal
efficacy over lower levels; whole-part causation

* No room at the bottom—-the laws of physics @
micro-level completely determine everything (?)

 New emergent laws lead to over-determination

— =

Downward causation

o




Methodology to explore Emergent QM:

Quantum Mechanics

1 1

Nonlocality @ Relativity

Axioms for quantum mechanics

* Physical states are normalized vectors y(r), ¥(r.t),

V),

» Measurable physical quantities — “observables” — correspond
to Hermitian or (self-adjoint) operators on the state vectors.

» If a system is an eigenstate ’a) with eigenvalue a of an
observable 4, then a measurement of 4 on ‘a) will yield a.

* Conversely, if a measurement of 4 on any state yields a, the
measurement leaves the system in an eigenstate ’a),

» The probability that a system 5n a normalized state |111> can be
found in the state‘(p> 1s |((p|\|1)| :

¥ ().

* The time evolution of a quantum state |‘P(t )) 1s given by

., 0 B
zha“}’(t»—

where H is the Hamiltonian (kinet
of the system in the state |‘P(r)).

* The wave function of identical fg
be antisymmetric under exchange
function of identical bosons (spin
under exchange of any pair of the




Methodology to explore Emergent QM:

 Those axioms recalls a Woody Allen joke:

This guy goes to a psychiatrist and says, “Doc, my
brother’s crazy — he thinks he’s a chicken!”

The doctor says, “Well, why don’t you turn him in?”
The guy says, “l would, but | need the eggs!”

« We say, “Quantum theory is crazy — but we

* Not intuitive: “It’s like trying to derive specia
from the wrong axioms.” — Yakir Aharonov

“ Fast objects contract in the direction of t
“* Moving clocks slow down
“* Observers determine the results of meas



Methodology to explore Emergent QM:

* Question: What, indeed, is so “special” about special
relativity?

 Answer: The two axioms so nearly contradict each other
that only a unique theory reconciles them.




Methodology to explore Emergent QM:

Y. Aharonov and (independently) A. Shimony:
Quantum mechanics, as well, reconciles two things
that nearly contradict each other:

- Can we derive a part of quantum mechanics from
these axioms?

* Aharonov: Quantum mechanics must include
uncertainty.



Methodology to explore Emergent QM:

Quantum Mechanics

Nonlocality Relativity

Why uncertainty?

Traditional answer: nature Is capricious




Methodology to explore Emergent QM:

Nonlocality () Relativity
|

Quantum Mechanics

Can we derive quantum mechanics from these two axioms?
1. What 1s nonlocality?

Nonlocal correlations?
Aharonov-Bohm effect?
“Modular” dynamical variables?

2. What does “no signaling” mean?

What 1s left of “no signaling” in
the limit ¢ — oo of nonrelativistic
quantum mechanics?



Methodology to explore Emergent QM:

Nonlocality () Relativity
|

Quantum Mechanics

Can we derive quantum mechanics from these two axioms?
1. What 1s nonlocality?

Nonlocal correlations?

2. What does “no signaling” mean?

“No signaling” at any speed!

S. Popescu and D. Rohrlich, Found. Phys. 24 (1994) 379



Monogamy of CHSH correlations

(Befsn) 4
4

(0,2v2)

no-signalling region

* (BGsn)

Classical region _
quantum region?7??

S Popescu and D Rohrlich, Foundations of Physics, 24, 379, (1994).




Super-quantum Nonlocal Correlations

If causality does not
determine quantum
nonlocality, what does?




Many new results from PR impacting
computation/information

Non-trivial communication complexity

G. Brassard, H. Buhrman, N. Linden, A. A. Methot, A. Tapp and F.
Unger, Phys. Rev. Lett., 96 250401, (2006).

No Advantage for Nonlocal Computation

N. Linden, S. Popescu, A. J. Short, and A. Winter, Phys. Rev.
Lett. 99, 180502 (2007).

Information Causality

M. Pawlowski, T. Paterek, D. Kaszlikowski, V. Scarani, A. Winter,
and M. Zukowski, Nature 461, 1101 (2009).

Local orthogonality

T. Fritz, A. B. Sainz, R. Augusiak, J. B. Brask, R. Chaves, A.
Leverrier and A. Acin, Nature Communications 4, 2263 (2013) .

Etc, etc, etc, etc



Methodology to explore Emergent QM:

Nonlocality (O Relativity
4?

Quantum Mechanics

Quantum uncertainty (ontic) can be derived from:
e nonlocality: relevance of future to present
e causality
o free will




Indeterminancy: playing dice

e 15t atom decays in 1 min

« 27d 3tom (identical to 15t
atom) decays in 1 hour

* There was no
difference between
them in the beginning,
but they behave
differently later

Einstein: “God
does not play dice.”]



Time-Symmetric formulation of Quantum Mechanics TSQM

We ask: “Why does God play
dice?”

Traditl - ureis
—"

Alternative: allows quantum
mechanics to independently
select both the initial and final
states of a single system

TSQM: the state of a system at
a given moment is described by
two wave-functions, one
evolving from the past to the
future, and one evolving from
the future to the past



Time-Symmetric formulation of Quantum Mechanics TSQM

We ask: “Why does God play
dice?”

Traditional answer: nature is

capricious £l
2

Alternative: allows quantum
mechanics to independently
select both the initial and final /
states of a single system

TSQM: the state of a system at

a given moment is described by t,
two wave-functions, one
evolving from the past to the
future, and one evolving from
the future to the past

t (2

L

The two-state vector

)




Boundary conditions: classical vs quantum

e Classical (dependent): (X,P) ¢
(X,P)

init

[ —

e Quantum (independent):

) @

(@]




Boundary conditions: quantum

What can we say about the system at intermediate time, t
by using strong measurements?

{0Vt o) {0, U - ¥)|°
Yo (@ Usty | {0 | U 9

Pr(ajvt‘\llvtl;q)atZ) —

Y. Aharonov, P. G. Bergman and J. L. Lebowitz, Phys. Rev. 134, 1410 (1964)



Boundary conditions: quantum

What can we say about the system at intermediate time, t?
Strong measurement: Aharonov-Bergmann-Lebowitz (ABL) formula

(U=t a5) (05Ul E)}°
Yo (Ui ®|an) (an) Us | 9) |

PT(GJ‘, t|\117 tla (I)a t2) —

Y. Aharonov, P. G. Bergman and J. L. Lebowitz, Phys. Rev. 134, 1410 (1964)



Time-Symmetric formulation of QM (TSQM)

To be useful and interesting, any re-formulation of
QM shguld meet several criteria, for example:

fo\ﬂE&V‘\IS consistent with standard QM

<@2‘Ut—>tz — < t—}tgll;Z‘ <Utg—>t@2‘

UtT—nsz __ {e—zH(tz—t)} _ ptH(ta—t) _ —iH(t—t2) _ Uy,

2) TSQM brings out features in QM re emergence
that were missed before (e.g. weak values)

3) TSQM stimulated discoveries in other fields re
emergence

4) TSQM suggests generalizations re emergence




The two-state vector description of a quantum system

Measurements performed on a pre- & post-selected
system described by the two-state vector:

¥)

Strong measurement: The Aharonov-Bergmann-Lebowitz (ABL) formula:

b TP, =1 ?
: ) Prob(C =¢) = ([P %) 3
A — C =9 ZKCD‘P&@ ‘P>‘
¥) |
t, —— p, =
Weak measurement: The Aharonov-Albert-Vaidman effect:
Phys. Rev. Lett. 60, 1351 (1988).
(®|C|¥)

Weak value

(P|%¥)

Graphic courtesy Vaidman



2.a Weak Measurements - spin

Weak value given by Vertical

deflection
Weak
magnet

Strong

' magnet

Y Aharonov, D Albert, L Vaidman, Phys. Rev. Lett.60 (1988), 1351




Weak values and causality: game of errors

O |A|Y
A = Yo 1) S

Weak value sum rule




Weak values and causality: game of errors

P(N)|
V2N
2
: I'-------A . N N N 1 P
_N N 3N
2 2 1

Probability to obtain weak value as an error of the measuring device is
greater than the probability to obtain weak value

Uncertainty (playing of dice) derived from nonlocality in time, causality

Led to new approach to information we call “weak information”™



Emergence through hierarchical entanglement

* Using entanglement with a higher hierarchical level,
there may be time intervals with no independently
evolving sub-systems

e |.e. nproperties & functions denend on whole

(— Emergence Submergence
Biology A > Actual
Causal Process
Chemistry A pl——_ V_,,.
/ Possible
Causal Process
PhySiCS m—pplm e e e Lo >

Courtesy Kronz



Emergence through hierarchical entanglement
* Shimony states:

— “Atoms thus exhibit form in Aristotle's sense, and even have the tendency to maintain this
form, which phenomenologically is like his final cause. But the Aristotelian form is
achieved by Democritean means -- by interactions among the electrons and the nucleus,
which leave these building blocks intact.”

* Leading him to:

— “The parts-wholes problem has an ontological aspect, which concerns the properties of
the components and the composite system without explicit consideration of how
knowledge of them is obtained. Among the ontological questions are the following: Is
there an ultimate set of entities which cannot be subdivided and which are therefore
‘atomic’ in the etymological sense? If the properties of the components are fully
specified, together with the laws governing their interactions, are the properties of the
composite system then fully determined? In particular, are there properties of composite
systems which are radically different from those of the components, and which might
properly be characterized as ‘emergent,” also definable in terms of the later? Do
composite systems belong, always or for the most part, to ‘natural kinds?’ Is the
existence of natural kinds explicable in terms of the laws governing the components? Are
both the possible taxonomy and the actual taxonomy of natural kinds thus explicable? Is
there a hierarchy of ‘levels of descriptions’ -- i.e., microscopic, macroscopic, and possibly
intermediate -- such that laws can be formulated concerning a coarser level without
explicit reference to the properties at a finer level of description?”



General feature of PPS: failure of product rule

b TP =1 :<¢‘C“P>
| (@¥)
2% S A C =9
1 " (A+B) =A, +B,
o L p (AB) #AB,

The weak value of a product of observables is not equal to the product
of their weak values. In some sense, hew properties emerge with
complexity!



Non-locality of EPR from perspective of TSQM

T M8, -0m,)

g, ! O-—)C—Zl ;=1 Oy =1
(Tl (| o.p="1
NI - ST
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Elitzur & Vaidman Interaction Free Measurements

« However, the phase difference
D+ C+ between the left and right path can
'\ /’ be altered by the presence of an

object in which case detector D
may be triggered

 |f detector D~ is triggered one may

&/ then conclude:
— The particle was not blocked by
the object

— The object must have been in
the path



X
.

PARADOX: they should
never reach the
detectors because e+ °
and e- overlap and
therefore annhilate

Hardy’s Paradox

With 2 MZI’s, there is overlap region

Each MZI can be said to measure
whether or not the other MZI’s
particle is in the overlapping path,
otherwise nothing would have
disturbed the electron, and the
electron couldn't have ended in D-

But, if detectors D- and D+ both click
then intuition leads to a paradox.

If D- clicks, then e+ must have gone
through the overlapping arm:

D-— e* overlapping arm

Conversely if D* clicks then e- mus
have gone through overlapping arm

D+ — e- overlapping arm



Hardy’s Paradox

« Suppose we try to measure the
position of e by inserting a detector
D, In the overlapping arm of the e

MZI.
« e is always in the overlapping arm,
however D, disturbs e & e could

end up in the D-detector even if no
et Is present in the overlapping arm

 Cannot infer from D-that e* was in
the overlapping arm disturbing e.
The paradox disappears.

D' = ¢ 0,D=¢"NO

D™ = ¢'0




Weak measurements and counterfactuals

Aharonov, Botero, Popescu, Reznik, JT, “Revisiting Hardy's Paradox:

Counterfactual Statements, Real Measurements, Entanglement and Weak
Values” Physics Letters A, v301, 130

Paradoxical reality implied counter-factually has new experimentally
accessible consequences in terms of weak measurements, which allow
us to test - to some extent - assertions that have been otherwise

regarded as counter-factual - -
NewScientist

D' (“ DT %

weak value Eﬁ%‘ﬁé‘%&%ﬁ%ﬁfg
[4 b |
of ‘number §CIENTIFIC
of particle- EZ.IZERICAN
. . pairs is
! ] 2009
e v ot negative 10

Experiments: J.S. Lundeen and A.M. Steinberg Phys Rev Lett 102:020404, (2009)
K. Yokota, T. Yamamoto, M. Koashi, N. Imoto New Journal of Physics 11 (2009) 033011




Weak values obey a simple intuitive & self-consistent logic

- C- D+ ct

- If there is 1 e+ in overlapping arm L N

& 1 e- In other overlapping arm \N0E+

» How can there be ZERO e+e- NG
pairs in both overlapping arm ’ f

« The particles are both definitely in S 95 <

the overlapping arms, but the
are not there together?

« Ans: the weak value of a product
of observables is not equal to the
product of their weak values.

Aharonov, Botero, Popescu, Reznik, Tollaksen,
Physics Letters A 301 (3-4): 130-138, 2001.




Weak values obey a simple intuitive & self-consistent logic

. . - - + +
But we also have the statements: D' | C‘ D' | C‘

— e must be in the overlapping arm
otherwise e* couldn't have ended at D- &

— e* must be in the non-overlapping arm
since there was no annihilation

— These & the opposite are confirmed

« These 2 statements are at odds w/ the fact
that there is just one electron-positron pair

« QM solves the paradox in a remarkable way
- It tells us that there is minus one electron-
positron pair in the non-overlapping arms
which brings the total down to a single pair!



Atom of Emergence/Holism

* While there is no particle in
either outer path

- Nevertheless, the interaction j o
between the 2 paths tells us that
there is minus one electron-
positron pair in the non-
overlapping arms

' - _ S —
ANO\\‘ — 0‘ NNOW =0

BS, &

No particle <4—) | No particle
here here




Generalization of Atom of Emergence/Holism

A
o1 (0= T+ T (T
2 S RN — SR
<¢I
t- _______________________________________________________________________________________________________________________________
I|‘P> — —— — — / H ENE
e [ B B+ P @)+ @
w) = 111 Y v

particle 1 particle 2 particle 5



Generalization of Atom of Emergence/Holism

5

t3 T ((I)‘ - H<l‘l‘h\' =+ 1—]: (T:‘m

k=1 m=1

o)-f o) (@

Strongly measure 1
_projection 1+, } ________________________
operator for 1
A — / HEN
o +®) o + @&

particle 1 particle 2 particle 5




Generalization of Atom of Emergence/Holism

D

t3 T ((I)‘ - H<l‘l“k T 1—]: (T:‘m

k=1 m=1

4

s

4

Strongly measure
projection
S I | S [ ) R i o AR R operatorfor1- &2 -

(1461 {1 462)

e

Z

particle 1 particle 2

e

particle 5




Generalization of Atom of Emergence/Holism

A Weak value is 2N ; we pick up something that we don’t

> normally think is there; it is a very strong, stable effect
to+ (@ =TT+ TT (Tolm y y strong

k=1 m=1

article 1 particle 2 particle 5

|

Only when strongly

il Sl AU A el S A Lt A

] ] |

{



Generalization of Atom of Emergence/Holism

1 (U= ﬁ(lr\k + mli_Il(T:\m
. Lh /BN N E— o)- @
<¢I
| 48848 84
Tl‘ﬂ L L o~ ausw
T L = AU E— o.®
W) = 1;[1 T2); v v

particle 1 particle 2 particle 5



Quantum Cheshire Cat

« “Well I've often seen a cat without a grin,"” thought Alice “but a grin
without a cat! It’s the most curious thing | ever saw in all my life”

« As if you were “separating a particle from its properties”

 what seemed to be a “whole inseparable system" can in fact be physically
separated into distinct parts residing at different locations. This opens a nhew
door on the relationship between wholes and parts

 New computational/information resource

Experiment: Denkmayr, Geppert, Sponar, Lemmel, Matzkin, JT, Hasegawa, Nature Comm (2014)
Theory: JT 2001 PhD thesis; Aharonov & Rohrlich 2005; Aharonov, Y., Popescu, S., Rohrlich, D., &
Skrzypczyk, P. (2013). Quantum cheshire cats. New Journal of Physics, 15(11), 113015.




Quantum chesire cat—experimental verification

Experiment: Denkmayr, Geppert, Sponar, Lemmel, Matzkin, JT, Hasegawa, Nature Comm (2014)
Theory: JT 2001 PhD thesis; Aharonov & Rohrlich 2005; Aharonov, Y., Popescu, S., Rohrlich, D., &
Skrzypczyk, P. (2013). Quantum cheshire cats. New Journal of Physics, 15(11), 113015.




...Meets Quantum Zeno Effect

How can we understand this separation?

Aharonov, Cohen and Popescu recently suggested

(arXiv:1510.03087) to combine this effect with the Quantum
Zeno effect.

The latter enables to carefully monitor the time evolution of
the “smile”, giving rise to a massless current of spin!

Furthermore, this current leads to an observable effect on its
remote owner.



A Massless Current of Spin

Mirror Beam Splitter  Selective Potential Barrier
cos’a sin’a V(x)= I+o, Vo®(x—L)
¥
o, =+1)
x=-L x=0 x=L X

The electron starts with momentum p, such thidp << p << Zmlj
Ilts state is given L/¥) = |L}lox = +1) |
Upon hitting the beam splitter; L) = cosellb) +sinall),

|R) —+ —sina|L) + cosa| R)

Now there are two cases:

1. The electron has spin-z up and therefore feels the potential

2. The electron has spin-z down and therefore does not feel the
potential

Y. Aharonov, E. Cohen, S. Popescu, arXiv:1510.03087



A Massless Current of Spin

Mirror Beam Splitter  Selective Potential Barrier

1+ 0.

cos’a sin’a V(x)= LV.0(x—L)
i
o, =+1)
x=-L x=0 x=L X

1. The electron has spin-z up and therefore feels the potential

After n period times
(nt)) = cos(na)|L)|o, = +1) +sin(na)|R)|o, = +1)

Hence if na = 3 the electron would move to the right side.

2. Electron has spin-z down and therefore does not feel the potential

After n period times the electron would stay on the left (the
amplitudes did not sum up coherently).

Y. Aharonov, E. Cohen, S. Popescu, arXiv:1510.03087



A Massless Current of Spin

Mirror Beam Splitter  Selective Potential Barrier

) . 1+0.
cos"a sin“a V(x)= 5 LV.O(x—L)

A’i

o, =+1)

x=-L x=0 x=L X

Therefore, if after n period times we find the electron on the left,
we immediately conclude that |7: = 1)

But how can its spin change if it was all the time at the left side?

The electron’s spin left its mass behind and traveled to the
right side!

Y. Aharonov, E. Cohen, S. Popescu, arXiv:1510.03087



A Massless Current of Spin

Mirror Beam Splitter  Selective Potential Barrier
cos’a sin’a V(x)= I+o, Vo®(x—L)
¥
o, =+1)
x=-L x=0 x=L X

The weak values tell the full story:
(0:)w = —1. mB) The spin along the z-direction was up at all

"

(TRro-(NT))w = sinasin(na), (rpo.(nT)), = cosacos(na) »

The spin along the x-direction moved from left to right,

as indicated also by its time deri (7roy(n7)) = —isinasin(na)
Local current of massless spin can account for seemingly
nonlocal effects!

Y. Aharonov, E. Cohen, S. Popescu, arXiv:1510.03087

48



Emergent Entanglement

When the selective potential barrier has spin, some more
surprises are expected!

Mirror Beam Splitter Selective Potential Barrier
. ) 1+ 0,Yo ®
cos’a sin“a V(x)= Z 2 VY Ox-L)
< >
¥
O-x — +1> O-x - +1>

Y. Aharonov, E. Cohen, S. Popescu, arXiv:1510.03087 49




Emergent Entanglement

Mirror beam bpi itter Selective Fotential barrier
) o 1+ o0 Pg @
cos’a sina V(x)=———"F—V,0(x-L)
«— —> 2

AS

|0, =+1) o, =+1)
x=-L x=0 -
Aproduct ||v) = |L)|el" = +1}|gl® = +1)
state
If the spins are aligned, the Otherwise, the particle
right amplitude is coherently stays on the left
pullt
Becomes . — _ -
Maximally |, — L) ot = +1) |t = —1) + |ot" = —1)|ot¥ = +1)
entangled! ' | V2

Here the particle and barrier become entangled by virtue of a
massless current of entangled spins! 50



Time-Symmetric formulation of QM (TSQM)

To be useful and interesting, any re-formulation of
QM shguld meet several criteria, for example:

fo\ﬂE&V‘\IS consistent with standard QM

<@2‘Ut—>tz — < t—}tgll;Z‘ <Utg—>t@2‘

UtT—nsz _ {e—iH(tz_t)}T — eiH(ta—t) _ miH () _ [,

f”
-

’

hat Were missed before (e.g. weak values)

3) TSQM stimulated discoveries in other fields re
emergence

4) TSQM suggests generalizations re emergence




Weak Values and Contextuality

o~ 7~ 7~
/! I /

™

5
(!
_/J.I

{_al 02 alo?
\.2 A 1 \.l \.2 -.:
= |
dy a, 040y }
12 241 122 | _

0.0, 0.0, 0.0, = £|

=y (=1) &-1)

A / . A

‘Novel proof that pre-and-post-selected QM is contextual
Weak value sighature that can be tested experimentally

-Conjectured that anomalous weak values constitute proofs
of the incompatibility of quantum theory with non-
contextual ontological models

«JT, Journal of Physics A, 40 (2007) 9033-9066)




Weak Values and Contextuality

Published in Phys. Rev. Lett. 113, 200401 (2014)

Anomalous Weak Values Are Proofs of Contextuality

Matthew F. Pusey*
Perimeter Institute for Theoretical Physics, 31 Caroline Street North, Waterloo, ON N2L 2Y5, Canada
(Dated: November 12, 2014)

The average result of a weak measurement of some observable A can, under post-selection of the
measured quantum system, exceed the largest eigenvalue of A. The nature of weak measurements, as
well as the presence of post-selection and hence possible contribution of measurement-disturbance,
has led to a long-running debate about whether or not this is surprising. Here, it is shown that such
“anomalous weak values” are non-classical in a precise sense: a sufficiently weak measurement of
one constitutes a proof of contextuality. This clarifies, for example, which features must be present
(and in an experiment, verified) to demonstrate an effect with no satisfying classical explanation.

d0i:10.1038/nature13460

. . . M Waegell, JT
Contextuality supplies the ‘magic’ for "Contextuality,

quantum computation Pigeonholes,

Mark Howard"?, Joel Wallman?, Victor Veitch?? & Joseph Emerson? CheShIre CatS,
Mean Kings, and
Quantum computers promise dramatic advantages over their classical counterparts, but the source of the power in We ak Val ues "
quantum computing has remained elusive. Here we prove a remarkable equivalence between the onset of contextuality 3
and the possibility of universal quantum computation via ‘magic state’ distillation, which is the leading model for exper - [
imentally realizing a fault-tolerant quantum computer. This is a conceptually satisfying link, because contextuality, which a rX V.

precludes a simple ‘hidden variable’ model of quantum mechanics, provides one of the fundamental characterizations of

uniquely quantum phenomena. Furthermore, this connection suggests a unifying paradigm for the resources of quantum 1 50 5 O 0098
information: the non-locality of quantum theory is a particular kind of contextuality, and non-locality is already known -

to be a critical resource for achieving advantages with quantum communication. In addition to clarifying these funda-

mental issues, this work advances the resource framework for quantum computation, which has a number of practical

applications, such as characterizing the efficiency and trade-offs between distinct theoretical and experimental schemes

for achieving robust quantum computation, and putting bounds on the overhead cost for the classical simulation of quan-

tum algorithms.



Quantum pigeonhole principle & nature of quantum correlations

Kinematic
nonlocality (EPR)

Quantum pigeo
complementary
to EPR

In a pre- and post-selected scenario, you can put as
many pigeons as you want in only two pigeonholes and
guarantee that no two pigeons are in the same pigeonhole.




Quantum pigeonhole principle & nature of quantum correlations

Consider three particles and two boxes, denoted L (left) and R (right).

To start our experiment, we prepare each particle in a superposition of
being in the two boxes,

1
V2

The overall state of the three particles is therefore

+) =—=(IL) +1R).

|U) = |[+)1|4)2]|+)a.

Now, it is obvious that in this state any two particles have non-zero prob-
ability to be found in the same box. We want however to show that there
are instances in which we can guarantee that no two particles are together;
we cannot arrange that to happen in every instance, but, crucially, there
are instances like that.

To find those instances we subject each particle to a second measurement:
we measure whether each particle is in the state:

-

_ 1
B V2

| +1) 73

([L) +z’R>) or |—i) (|L) - -i[R))

(these are two orthogonal states, so there is an operator whose eigenstates
they are - we measure that operator).

The cases we are interested 1n are those in which all particles are found in
| + 1), i.e. the final state

D) = | +i)1| + i)2| + 7)3.

/ post-selection

pre-selection

Aharonov, Colombo, Popescu,
Sabadini, JT; arXiv1i407.3194



Quantum pigeonhole principle & nature of quantum correlations

e Importantly, neither the initial state nor the finally selected state contain
any correlations between the position of the particles. Furthermore, both
the preparation and the post-selection are done independently, acting on
each particle separately.

e Let us now check whether two of the particles are in the same box. Since
the state i1s symmetric, we could focus on particles 1 and 2 without any
loss of generality - any result obtained for this pair applies to every other
pair.

e Particles 1 and 2 being in the same box means the state being in the sub-
space spanned by |L)1|L)2 and |R)1|R)2; being in different boxes corre-
sponds to the complementary subspace, spanned by |L);|R)2 and |R){|L)2.
The projectors corresponding to these subspaces are

Moy = TEE+TEF
my’ = npF+nfg
where
{5 = |L)1|L)21(L|2(L|, T =|R)1|R)21(R|2(R)
I{% = |L)i|R)21(R|2(L|, T{5 =|R)1|L)21(L|2(R]

/ post-selection

pre-selection

Aharonov, Colombo, Popescu,
Sabadini, JT; arXiv1i407.3194



Quantum pigeonhole principle & nature of quantum correlations

e On the imitial state alone, the probabilities to find particles 1 and 2 in
tl.le same box and-in different boxes are both 50%. On the ot..her hand, post—selection
given the results of the final measurements, we always find particles 1 and /

2 in different boxes. Indeed, suppose that at the intermediate time we
find the particles in the same box. The wavefunction then collapses (up
to normalisation) to

W) = 35|9) = 3 (10| LYo + [R)1|R)2) 1 +)s

which is orthogonal to the post-selected state i.e.

(®II775™|¥) = 0.

e Hence in this case the final measurements cannot find the particles in
the state |®). Therefore the only cases in which the final measurement
can find the particles in the state |®) are those in which the intermediate
measurement found that particles 1 and 2 are in different boxes.

e Crucially, as noted before, the state is symmetric under permutation,
hence what is true for particles 1 and 2 is true for all pairs. In other
words, given the above pre- and post-selection, we have three particles
in two boxes, vet no two particles can be found in the same box - our
quantum pigeonhole principle.

pre-selection

Aharonov, Colombo, Popescu,
Sabadini, JT; arXiv1i407.3194



Kochen-Specker contextuality can be localized
and observed through weak measurements

‘using pre- and post-selected states (PPS) along with many
existing proofs of the Kochen-Specker (KS) theorem, it is
possible to localize the violation of honcontextuality to
specific observables where it can be probed using weak
measurements.

Several important examples are discussed in detail, and a
framework for a more general set of experimental tests
based on known proofs of the KS theorem is given.

*The underlying ontological models that are used in these
arguments are explored detail, and connections are made
to PPS paradoxes such as the 3-box paradox, the quantum
Cheshire Cat, and the quantum pigeonhole principle, as
well as to the Mean King’s problem.

"Kochen-Specker contextuality can be localized and observed through weak
measurements," Mordecai Waegell , JT, arXiv:1505.00098



Newton’s laws: local equations of motion

In classical physics, the force has to act in
the same place where the particle is



Nonlocality: kinematic vs. dynamic

Bell-inequality violations follow from the Hilbert-space structure of
quantum mechanics; they are purely kinematic

Aharonov-Bohm effect demonstrates dynamical non-locality , i.e. in
the quantum equations of motion




Quantum interference, modular variables & weak measurements

e using H = 2m—|—1 (r) and eFPPY (x)e —#D = v (r+D), we find non-local
Heisenberg equations of motion for modular variables:

d ) ;
e — Z[H 0] — =V (2) = V(2 + D)]e”
v e no classical counterpart:
L : df (p |
__f "u d&?) = {f(p), H}pp
of oH Jf ()H
. :.Jl[l,'l". = 5 8 s ﬂ}i pap
_I_I
() D 2 D i.e. f(p) changes only 1f % £ ()

i . at the particle’s location.
ei?P changes even if % =

JT et al,New Jrnl Physics 12 (2010) 013023; see experiment Spence, Parks
arXiv:1010.3289,_Foundations of Physics, 2011




Quantum interference, modular variables & weak measurements

R

e interference depends on rela-
tive phase a between different

lumps: U, = 1, + g

e All moments of position and momentum are independent of the
relative phase «. This characterizes all interference phenomenon:

e Operators that are sensitive to the relative phase are exponen-
tials of the position and momentum. These operators translate
the different “lumps” so that they overlap:

exp{—LpDYr(x) — Yr(x — D) overlaps v
(U, | exp{ipD/h} | ¥,) = e7"@/2
e Replace p with p — %, then e#?D — 79 — ¢

h — h
D = Pmod (0 E Pmod E ﬁ

in2m : .
T =1 - no change:

(e?%f’D) yields information about pmod

JT, Aharonov, Casher, Kaufherr, Nussino,New Jrnl Physics 12 (2010) 013023




Having your cake & eating it-measuring nonlocal
interactions w/o violating causality

¥ P
f ;— S— Post-select an : 2
l eigenstate of parity
Z{lvL)+Yr)}
l3 = X Open or close slit ~

<CI)‘ C ‘ ‘P> Weakly measure

modular variable exp(ipD//h)

<(D“P> (use parity for special case of

YR + YL and YR — L)

N
0
Il

t + L ‘\P> Pre-select all particles /\‘Iﬁ

at right slit |r)

X

JT et al,New Jrnl Physics 12 (2010) 013023;
see experiment Spence, Parks arXiv:1010.3289, Foundations of Physics, 2011




3.c Schrodinger vs Heisenberg

e The Heisenberg picture leads
us to a physical explanation for
the different behavior of a sin-
gle particle when the distant
slit is open or closed

e instead of having a quantum
wave that passes through all
slits, we have a localized parti-
cle with non-local interactions
with the other slits




Conclusions

- if your only tool is a som 0.
hammer, then you tend to
treat everything as if it
were a nail

- To grasp the world more Mathematics
and Foundations

fully by grasping it gently

See Quantum.chapman.edu

Members ¢
Include: .




Classical limit of quantum optics: not what it seems at first sight

® The reduction of quantum optics to wave optics has been considered to
be relatively simple. It is not so.

® The classical limit of quantum optics is dramatically more involved and
requires a fundamental revision of our intuitions.

e The revised intuitions can serve as a guide to finding novel quantum
effects.

Y Aharonov, A Botero, S Nussinov, S Popescu, JT, L Vaidman, New Journal of Physics 15 093006, 3 Sept 2013




Classical limit of quantum optics: not what it seems at first sight

e Quantum and classical

calculations lead to same result
e The issue however is with the
story each theory has to tell.

e Although the external beam has
a shallower incidence angle than
the inside beam, its intensity is
much higher and the momentum
kick given by it is larger

e Classically, the external beam
plays the central role - one
would be tempted to assume
that quantum mechanically the
photons that constitute this
beam are the ones responsible
for the inward push.

e Remarkably, this is not so

Y Aharonov, A Botero, S Nussinov, S Popescu, JT, L Vaidman, New Journal of Physics 15 093006, 3 Sept 2013




Classical limit of quantum optics: not what it seems at first sight

e Quantum and classical

calculations lead to same result
e The issue however is with the
story each theory has to tell.

e Although the external beam has
a shallower incidence angle than
the inside beam, its intensity is
much higher and the momentum
kick given by it is larger

e Classically, the external beam
plays the central role - one
would be tempted to assume
that quantum mechanically the
photons that constitute this
beam are the ones responsible
for the inward push.

e Remarkably, this is not so

e Photons at D5!

Y Aharonov, A Botero, S Nussinov, S Popescu, JT, L Vaidman, New Journal of Physics 15 093006, 3 Sept 2013




QM Generalization: Each moment of time a new universe

- New ability to obtain a post-selected state of one particle that is
completely correlated to the pre-selected state of a second particle:

BTSN

« stack N particles on top of another along the time axis:

stack
time T
____( _______ j__ GUI'I'@I&LC)
stack
— o=(ta) Za = [
t3 ----( ------- - correlateD -----------------------------------------------------------------------
M stack | | ]
| O_.’r: t t O_.’r: t carraelaut s t carraelate
(t2)  to (t2) (t2)p i

———————————————————————————————————————————————————————————



QM Generalization: Each moment of time a new universe

T Two entangled spin 1/2 particles.
Entanglement characterizes solely
time {; where entanglement is
produced. All other times are
characterized by trivial time
evolution, i.e. maximal

entanglement between subsequent

t moments of time; there is however
|¢> <§D| p— no entanglement between the
E particles associated to these times.

Alice’s measurement disentangles
the time moments of her particle

: but have no effect on Bob’s particle.

$ « “Collapse” does not

necessarily imply arrow of time

| at microscopic level

Aharonov, JT, 2010, Visions of Discovery; Aharonov, Popescu, JT, arXiv:1305.1615
Aharonov, Popescu, JT, Vaidman, Phys Rev A 79, 052110 (May 1, 2009)
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Each moment of time is a new universe

“block universe
on steroids™
David Albert

r |

7
Zarg
7

Anthony’s URB v ER

Aharonov, JT, 2010, Visions of Discovery; Aharonov, Popescu, JT, arXiv:1305.1615
Aharonov, Popescu, JT, Vaidman, Phys Rev A79, 052110 (May 1, 2009)




Clock Time, t

Becoming Time, T

A moment of awareness corresponding to a collapse
and a wavepacket of ‘becoming time’ in the universe



| Measurement of arbitrary observable C

) H. =g()P,,C _ C
. Qﬁn _c, ¥ (0) { MD &= g(t)
‘Wf>:|02>
T — ﬂ
tl Qin — O

N\ ,

| |
0 C, €3 o

C
Collapse!

Zi:ai‘Ci>‘Q=0>—>Z%‘Ci>‘Q=Ci> —[e)|0=¢,)



| } Weak Measurements of arbitrary observable C

[ s Hint — g(t)PMDC

0 ¥ (@ (P, )=0, AP, small
N~ — H_ is small




Weak Measurements of arbitrary observable C

W (Q) H,, =g®)h,,C

(Py,)=0, AP, small

= H,_ 1s small




| } Weak Measurements of arbitrary observable C
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Weak Measurements of arbitrary observable C

The outcomes of weak measurements are weak values

Weak value of a variable C of a pre- and post-selected system
described at time t by the two-state vector (P | v

. (@ el C :<CD‘C‘\P>

X C =9 o (PY)
¥)

"l —— p,=1




Weak Measurements of C with post-selection

H, =g®)F,,C
(Py,)=0, AP, small

= H,_ 1s small




Weak Measurements of C with post-selection

-------
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H, =g®F,,C

<PMD> =0, AP,, small

= H,_ 1s small
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The outcomes of weak measurements are weak values

Weak value of a variable C of a pre- and post-selected system
described at time t by the two-state vector (X | W)

m?{ > C _(®|C|P)

AR Oy =" v <CI)‘lP>

) + g
o,+0,

(05) = <Ty ‘Gf TX> _ <Ty J2 Tx>
(L) (T,IT)




Weak measurements performed on a pre- and post-selected ensemble

O,+t0, Pointer probability distribution
Weak Measurement of 0, = ——F=—
2  Strong
. o A= 0.1 A=3
Hirlt = g(t)PMDGSg Y 7(Q)=e * 3 /\
The particle pre-selected O =1 : ) N
a) 1 ) ' E
The particle post-selected O y = | e I B S v S R
1 I
/!
x o A= 10 o0 W@Clk
A A=025" :
t2 Gy : 1 1.5 0'06————;‘——_\
<Ty ‘ b) o e)
: () 3 2 _(_l.x 0 1 2 3 4 3 2 1 [3] 1 2 3 4
A 0-5
‘TX> A= 10
[ 1 — N — ’
1 O, 1 N=5000
(O-Cf) ; 1.4 ! c) V/ 1
w




Robust weak measurement on a pre- and post-selected single system

The system of 20 particles Pointer probability distribution

1 20
Weak Measurement of 2—02:,055 A=0.01 strong 025
20 particles pre-selected 5 —|
20 particles post-selected o =] A
1l

_ Gl_yzl

A 20
[1(1,] “
AN Y 5 A=0.05 A=033
1= g 2
N

Iy

A=0.10

1 20 6 1.5
M (02
T . —> 0 = 1
A 20 i=1 2 a.s
. A=0.50 1z

9.5

7~ N\
S| —
i \gls
Q
o
N—
<
[,
~

See also “Robust weak measurement « JT JOP, (2007)



A Weak quantum measurement of (C
L, Hint — g(t)PMDC

f oo <PMD> =0, AP, small

W, (Q) — H_ is small
o




A Weak quantum measurement of (C
Hint — g(t)PMDC

------------------------- (Pyp)=0, AP, small
W (0) — H_ is small




Weak quantum measurement of (C
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; Weak measurement of (' with post-selection
Hint = g(t)PMDC

------------------------- (Pyp)=0, AP, small
W (0) — H_ is small




Weak measurement of (' with post-selection

t A <Qﬁ”>: w H, =g)F,,C
2 Pq) =
(P,,)=0, AP, small
A .
Y, (Q) = H._ is small
(Q)=0
1 P‘B';T """"""""""""""""""""""
— T — -
0 C, G ¢, G5 0



QM Generalization: Each moment of time a new universe

|
|
=

Aharonov, JT, 2010, Visions of Discovery; Aharonov, Popescu, JT, arXiv:1305.1615
Aharonov, Popescu, JT, Vaidman, Phys Rev A 79, 052110 (May 1, 2009)

Two independent ”lives” lived in
parallel by the same particle.

Tarar A e e




QM Generalization: Each moment of time a new universe

(a) Each moment of time is a little
“brick.” The Hilbert space at the
future boundary of one time
moment is maximally entangled -
with complete correlation - with
the Hilbert space at the past
boundary of the next time moment
(straight line). The state 1 is
associated only to the moment ¢,

|¢> <¢| where it was prepared.

(b) A more general time evolution.
A measurement with a collapse on
state ¢ disentangles the two
subsequent moment of time.
Non-trivial unitary time evolution
at all other time is represented by
maximal entanglement but between
appropriately rotated bases

b (squiggled line).
Aharonov, JT, 2010, Visions of Discovery; Aharonov, Popescu, JT, arXiv:1305.1615

Aharonov, Popescu, JT, Vaidman, Phys Rev A 79, 052110 (May 1, 2009)
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New forms of holism/emergence

although we may know the dynamics on a particular time-scale 7', this doesn’t mean that we
know anything about the dynamics on a smaller time-scale:

e~HT = {¢ _?}{ZIT}l

. . . . . 2 —iHT
consider a superposition of unitary evolutions (using e {e N } ):

/g(z/)e_'iH(”)tdz/ - /g(z/){l + iH(v)t}dy = 1+27/g(1/)H(1/)1‘dz/ (0.1)
if fg(.v)dv:l

This theory is the same as the usual theory but with an effective Hamiltonian

Heyr = /g(z/)H(z/)tdz/ (0.2)
" } —iHT
The finer grained Hamiltonian can be expressed as a superposition of evolutions e~ =
~ifn AT
Lane N le. the Hamiltonian can be represented as a superposition of different laws

given by pre-and-post-selection

Top-down approach?




QM Generalization: Each moment of time a new universe

- New ability to obtain a post-selected state of one particle that is
completely correlated to the pre-selected state of a second particle:

BTSN

« stack N particles on top of another along the time axis:

stack
time T
____( _______ j__ GUI'I'@I&LC)
stack
— o=(ta) Za = [
t3 ----( ------- - correlateD -----------------------------------------------------------------------
M stack | | ]
| O_.’r: t t O_.’r: t carraelaut s t carraelate
(t2)  to (t2) (t2)p i

———————————————————————————————————————————————————————————



Ascertaining the results of products of the 9 observables
(Tollaksen, Jrnl of Phys A, 40 (2007) 9033)

* |[f we measure the operators corresponding to the first

2 observables of row 3 0,.0,0.0,1the PPS
::_/'T“l’, = J_| rT“' = l‘

f .
Ufin ‘(T _ 1 \ f_l
rfj) i3
t 2
Ty t2
Tin 1 :

\(T =1) ’fT" = 1)

e then the measurements_llnter’re_r?’ with each other

“7=1_7, Diagonal PPS -
S ®=" generic feature




Ascertaining the results of products of the 9 observables
(Tollaksen, Jrnl of Phys A, 40 (2007) 9033)

« Given one PPS, the subset of observables circled (and the
products of those circled observables) can be assignhed
eigenvalues in a way that satisfies the product rule

(A1 2 [ 4152) ol || 62 | ale?
JT;- O; 00 ) T Or T
7% a ) ] ~ ] 2 2] a9
T, Ty il Ty 7y ay,dy
152 2231 \ 2122 ) (51s2 1 s2:1 ] 21507
020 Tp0y N\O20; )/ H‘__‘_H_T.;-"T_.ys' H_‘T.?"T_i;s' 0,0, J

L A )
. - - =

- But, the product of the other observables can only be
ascertained (given this particular PPS) using information
from both the pre- and post-selected vector in a diagonal
sense, and will thus violate the product rule.




Physical reason for restrictions on these assignments
(Tollaksen, Jrnl of Phys A, 40 (2007) 9033)

* All sets of boundary conditions are needed

« However, when the first observable is ascertained, then it will
depend on both the pre- and the post-selection measurement
(i.e. it will be diagonal-PPS) and will collapse the entire
configuration onto a subset of the PPSs, thereby disturbing
the terms of the multiple-time state.

( : — l (O - — l il (O ] — { ( - — W1
7(tin {Tli ‘ ‘. T.‘f 1 ‘ }®| tU"‘:] _|_ { I- T” H i l l‘ }®| tl‘

-
T 1 T | T
lin 1\(71 = 11} ‘(Tf = 1) }®|t“f —l_ {‘n} = | ‘(T“: — 1:} }®| fl,f‘

« Mermin's statement: Alice's other two results' have nothing
to do with any properties of the particle or the results of any
measurement actually performed.”




If C=c, w/prob1thenC =g

This theorem circumvent the need to consider measurements
that are temporal successors in the PPS paradox as
counterfactual alternatives in the proof of contextuality

Theorem: Logical-PPS-paradoxes imply quantum
contextuality” through weak values

 Quantum Contextuality: For any initial qguantum state
which exhibits a breakdown of hon-contextuality in the
associated HVT for a certain set of operators (i.e. for which
ABL assigns definite values of 0/1), one can find at least
one post-selected state which will show how the function
composition rule (i.e. sum and product rules) is violated.

- Applied this analysis to Mermin, EPR, GHZ: in each case,
eccentric WVs outside EV spectrum

« Post-selections suggests a physical picture for why the
assignments cannot be made. In addition, the existence of
strange WVs demonstrate a new way that QM copes with
contextuality.



Summary

« Used PPS to probe contextuality-can be tested
experimentally. As Mermin states, this is not “theorizing
about hidden variables'. It is a rock solid quantum
mechanical effort to answer a perfectly legitimate quantum
mechanical question.”

« weak values go outside the spectrum with contextuality

12221 _
— Mermin contextualitv: 0.0,0:0, = —1 even though

separately 0’ (T" = +land 626! = +1

— these 3 outcomes can be measured weakly without
contradiction because the product of WVs is not equal
to the WV of the product

« With the assumption that a WM does not considerably
modify the hidden variable, then this strengthens a hidden
variables proof of contextuality



Wea k Val u eS a n d ContextualityM Waegell, JT "Contextuality, Pigeonholes, Cheshire

Cats, Mean Kings, and Weak Values,"arXiv: 1505.00098

The Kochen-Specker Theorem

The Kochen-Specker (KS) Theorem posits that quantum
mechanics is inconsistent with Noncontextual Hidden Vanable
Theories (NCHVTSs) of reality.

(1) By a hidden variable model, we mean that for each
observable that can be measured, a predetermined outcome
exists that is simply realized by the measurement.

(2) By noncontextual, we mean that the predetermined
outcome for each observable should be independent of what
other compatible (commuting) observables may be measured
at the same time.

The simplest proof of the KS Theorem is the well-known Peres-
Mermin square for two qubits. Any state can be prepared, and we
will choose to measure all three mutually commuting observables
on a randomly chosen line of the square.

(@127
)
@)~02()

(3) According to (1) and (2), in order to predict all possible
outcomes we must assign a single eigenvalue +1 or -1 to each
of these 9 observables.

(4) According to QM (and experiment), the product of the three
values along a given (thick) line of the square must be (-1) +1.

L

It is impossible to find an assignement of eigenvalues that satisfies
both (3) and (4), which proves the KS theorem.

To see this, consider the product of all six lines of the square (three
horizontal and three vertical). According to (3) this product is +1,
since every value appears in two lines, and therefore becomes
squared in the product, while according to (4) this product is -1,
since their are five thin lines (+1) and one thick line (-1).

In order to experimentally verify that (4) is satisfied and (3) is
violated, we now consider the sum of all six lines, with a negative
sign for the thick line.

Then, when we perform the expenment, quantum mechanics
predicts that the sum is 6, which will be reduced by experimental
imperfections.

If however, we insist that (3) must be satisfied and (4) violated,
then we see at least that one of the terms must get a sign flip, and
as a result the sum can never exceed 4.

Therefore any experiment in which the measured value of this sum
significantly exceeds 4 experimentally rules out NCHVTs.

The important point to take away from this is that if (3) were
satisfied and (4) violated, then the product rule would be violated in
experiments with nonvanishing probability.

No pure state in the vector space formalism of quantum mechanics
can violate the product rule, and thus there are no projectors onto
these outcomes, nor POVMs describing a measurement that
contains them.

This has an important consequence for the Ahoronov-Bergmann-
Lebowitz (ABL) reformulation of quantum mechanics, which
implicitly assumes that both the prepared state and the
measurement-outcome state belong to the vector space formalism,
and therefore neither one can violate the product rule. Thus the
situation where (3) is satisfied cannot even be expressed within the:
ABL reformulation of quantum mechanics.

The next important question concemns how we interpret the thesis
of the Kochen-Specher theorem. If the NCHVTs are ruled out,
what explanations are we left with? There are several possible
ways to answer this question.

We should now emphasize that there was a crucial assumption in
our derivation of the KS theorem, and this was the assumption of
free random choice. Itis only because we choose which
measurement to make at random that it is reasonable to require
the existence of a predetermined outcome for all 9 observables
that could be measured.

The KS theorem then shows us that if such predictions exist, they
must be explicitly contextual, which is to say that (2) is violated,
and a given observable is free to have different predicted values in

earh rontavt



Wea k Val u eS a n d ContextualityM Waegell, JT "Contextuality, Pigeonholes, Cheshire

Cats, Mean Kings, and Weak Values,"arXiv: 1505.00098

A New Type of Hidden Vanable Model

The other, usually overlooked, explanations are those which call
random free choice into question. These have collectively been
called the superdeterminism loophole.

We propose a new type of hidden variable model here that satisfies
(1), (2), and (3) by placing a restriction on free random choice.
Specifically the product rule (4) must be violated in this model, but it
is impossible to choose to measure the context (line) where this
violation occurs.

This model can also be intepreted in a way that preserves free
random choice, by allowing nature to play a sort of "Shell Game' in
which the assignments to the entire set depend on which
measurement is ultimately chosen. This interpetation is actually a
sort of retrocausal contextuality, in that the finally chosen
measurement context influences eigenvalues that are preseumed to
exist in the past. It is worth mentioning that this retocausalitry could
never violate the no-signalling principle.

For our purpose here, all that matters is that in either interpretation,

the product rule is violated, but the violation is never observed. We
can thus remain agnostic about which interpretation we apply to our
model.

Importantly, since neither the prepared, nor the finally measured
state violate the product rule, this model is perfectly consistent with
the pre- and post-selected (PPS) states of the ABL reformulation.

For the example that follows, we use a different 3-qubit KS set (still
asquare). We pre-select and post-select the product states,

T) = |X =+1)®3 & [@) =Y =+1)®°
The ABL formula then predicts unit probability to obtain the
outcomes in the top of each vertical line by an intermediate strong
measurement, and these values subsequently violate the product
rule for the top horizontal line. In this PPS-paradox the violation

also occurs in a product basis, and thus all three quibts can be
considered independently to obtain this result.

23

Taking Z to be the classical basis with no superposition, this has
also been called the quantum pigeonhole effect.

In that language, there are 3 pigeons (the qubits) and 2 boxes (the
Hilbert space of each qubit). The eigenstates of the Z basis are the
classical states (e.g. 2 pigeons in the left box and 1 in the right, or
all 3in the left, etc...) . The violation of the product rule shows that
all classical states are forbidden, and it is thus impossible to specify
where the 3 pigeons are during the intermediate time.

Furthermore, returning to the 2-qubit Peres-Mermin square, we can
obtain the quantum cheshire cat in exactly the same way - pre-
selecting a Bell state along the bottom horizontal line, and a product
state along the middle horizontal line, again causing a violation of
the product rule in the classical basis.

Specifying a PPS state also defines the weak values of all
observables at once, regardless of commutation properties. The
weak values are identical to the eigenvalues for all observables with
either the pre-selected and post-selected state as an eigenstate.
Furthermore, the weak values are defined in measurement contexts
where the product rule may be violated, and this information can be
probed using weak measurements. In special cases where the ABL
reformulation allows us to localize the violation to specific contexts,
some weak values must be anomalous, and this signature of
contextuality can be experimentally observed.

The ABL formula can be expressed very simply in terms of the
weak values of the projectors in the measurement basis.

re 3 | (I )|
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It is then easy to obtain the ABL rule and Reverse ABL rule for
projectors: if the ABL formula predicts unit (zero) probability to
obtain a projector by a strong measurement during the intermediate
time, then the weak value of that projector is 1 (0). And the reverse;
if the weak value of a projector is 1 (0) then the probability to obtain
that projector by an intermediate strong measurement is 1 (0)*.

The ABL rules thus allow us to include these forced values in the
eigenvalue assignment of our hidden variable model, and we can
jusfify using these values by weakly measuring the weak value.

Finally, weak values have several natural features that make them
promising as elements of reality.

(5) Weak values are noncontextual, in the sense that every
observable has its own weak value, independent of what other
observables it commutes with.

(6) Weak values sum linearly by definition and thus obey the

sum rule.

* the measurement basis 8 must be e 2-element POVM that contains only Tis projecion and s orthogonal complement,
=™ fhat S fan wnan the snfre Slihert enors
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We now consider the hidden variables and weak values of the

projectors in our previous example, and violations of the sum rule
(the eigenvalues of projectors in any basis must sum to 1). Each
of the 6 lines of the square defines an eigenbasis of 4 rank-2

projectors, and we index these 1 through 24, and show the 24 Foiling the Mean King
orthogonal bases they form.

Tewosmaene oo As a final correllary, we use weak values to show that the Mean
eigenbases of the maodel, with - - - - -
horizontalnes, henext 3 projectors, superposedinheir  underines for King will always fail if the suitor makes measurements from a KS
the vertical lines. This set I:ases'bbﬂ!aundous forced values, and
s saturated, showing weak value in the conflict the conflict bases in set.
orthogonal pairs. basis and flat ABL probability. boid.
1 2 3 4 05 05 05 05 0O 0 0 0
§ I o I 2§ & 2R To begin, recall that in order to succeed, the King must have a
13 14 15 16 1 0 0 0 1 0 0 0 1 Ay ¥ M
g - et PPS state for which the ABL probability is 0 or 1 for every projecto
223 H) |1 0 0 0] JL000 the suitor can measure. To see why no such PPS state exists,
13 17 w| 05 05 1 0 0010 consider the following:
1 4 21 05 05 10 001 0
2 3 2 n 05 05 0 0 00 0 0
T % ol B8 g ol R Es According to (5), weak values are noncontextual in the same
=2 0 I ¢ 3 B - sense as the eigenvalues of (2), and according to (6) they must
5 8 23 u 10 0 0 1 00 0 obey the sum rule.
6 7 21 2 1] 0 1 0 00 10
6 8 17 18 [}] 0 1 0 00 1 0
7 8 13 14 0o 0 1 0 00 10 )
9 W 1 16 I 0 0 0 1 000 Furthermore, any complete noncontextual assignment of Os and 1:
9 11 18 20 1 0 0 0 1 0 0 0 - - -
o 12 2 M 0 0 0 100 0 to a KS set of projectors must violate the sum rule in some bases.
R 5 & in - The weak values cannot violate the sum rule, and therefore the
L £ o9 1 0 000 weak values of the projectors in a KS set cannot all be 0 and 1 for
These three tables show the steps of determing the hidden variables and thus locating the any PPS
conflict bases in our model. Projectors highlighted in green have an eigenvalue 1, while

those in red have eignevalues 0.in the first step, projector 5 is pre-selected and projector 8
is post-selected. so they are green. and orthogonal projectors are red. In the second step.

- e bt b g g It then follows that for any PPS, the ABL formula cannot predict
bases. = = =
T3 3 T B T 3 3 probabiity 0 or 1 for all projectors in the KS set, and therefore the
6 7 8 6 7 8 6 7 L} 1 r M
s i i i > 6 n B ' 0 A suitor can beat the Mean King at his game.
13 14 15 16 13 14 15 16 14 15 16 N
17 18 19 20 118 19 20 18 19 20 Simon Kochen
21 22 23 4 2 22 23 24 - 22 23 4
T 2 13 16 1 2 16 1 2 16
1 3 17 20 13 20 i 3 20
14 21 24 14 24 1 4 2
2 S+ I & 2 3 2 »B 2 3 2 n
2 4 13 19 2 1 18 19 2 4 15 19
3 4 14 15 3 4 14 15 3 4 14 15
5 6 15 16 6 15 16 [ 15 16
7 19 20 7 19 20 7 19 20
5 R 21 M R 23 24 8 23 M4
6 7 21 2 6 7 22 6 7 2 22
[} 8 17 18 6 8 7 18 6 8 18
7 8 13 14 7 8 io14 7 8 i 14
10 14 16 10 14 16 10 14 16
11 18 20 ¢ 11 18 20 11 18 20
9 12 22 24 ¢ 12 2 24 ) 12 22 24
10 1 21 23 10 11 2 23 10 11 23
0 12 17 19 10 12 719 10 12 19
11 12 13 15 11 12 i 15 11 12 15




