Measurements on the Reality of the Wavefunction

Martin Ringbauer Quantum Technology Lab

> O Martin Ringbauer Benjamin Duffus

CENTRE FOR ENGINEERED QUANTUM SYSTEMS AUSTRALIAN RESEARCH COUNCIL CENTRE OF EXCELLENCE

CENTRE FOR QUANTUM COMPUTATION & COMMUNICATION TECHNOLOGY

AUSTRALIAN RESEARCH COUNCIL CENTRE OF EXCELLENCE

	Ψ	Ψ
	epistemic	ontic
Anti- Realist	Copenhagen (Bohr) Neo-Copenhagen (QBism, Healey, Peres, Mermin, Zeilinger)	
Scientific Realist	Einstein Ballentine (?) Spekkens Leifer	Dirac–von Neumann Many worlds Bohmian mechanics Spontaneous collapse Modal interpretations

Adapted from Matt Leifer

The ontological model framework Ontological models *aka* hidden-variable models

 Λ : space of **ontic states** (analogous to phase space)

system has a value $\lambda \in \Lambda$ that specifies all its properties (like phase space points)

 μ_{ψ}

Prepare system in state $|\psi\rangle$ in the lab:

we actually prepare an ontic state λ that is sampled from a probability distribution $\mu_{\psi}(\lambda)$ — the **epistemic state**

The ontological model framework

Two non-orthogonal states:

Measurements on the reality of $\boldsymbol{\psi}$

Ruling out ψ -epistemic models impossible without additional assumptions

Still possible to severely constrain Ψ -epistemic models, and bound the degree to which they explain quantum phenomena.

Barrett, Cavalcanti, Lal & Maroney No ψ-epistemic model can fully explain the indistinguishability of quantum states PRL 112, 250403 (2014) Branciard ψ-epistemic models cannot explain the indistinguishability of quantum states

PRL **II3**, 020409 (2014).

The limited distinguishability of non-orthogonal quantum states cannot be fully explained by ψ -epistemic models for systems of dimension >2

Measurements on the reality of $\boldsymbol{\psi}$

The limited distinguishability of non-orthogonal quantum states cannot be fully explained by ψ -epistemic models for systems of dimension >2

Quantum States

Quantum trace distance:

$$\delta_Q(\psi,\phi) = \sqrt{1 - |\langle \psi | \phi \rangle|^2}$$

Epistemic States

Classical trace distance:

$$\delta_C(p,q) := \frac{1}{2} \int |p(x) - q(x)| \, \mathrm{d}x$$

Quantum overlap:

$$\omega_Q(\psi,\phi) := 1 - \delta_Q(\psi,\phi)$$

$$\omega_C(p,q) := 1 - \delta_C(p,q)$$
$$= \int \min\{p(x), q(x)\} \, \mathrm{d}x$$

For an ontological model to be **maximally Ψ-epistemic**

$$\omega_C(\mu_{\psi}, \mu_{\phi}) = \omega_Q(\psi, \phi) \quad \forall \psi, \phi$$

$$\kappa(\psi,\phi) = \frac{\omega_{\rm C}(\mu_{\psi},\mu_{\phi})}{\omega_{\rm Q}(|\psi\rangle|\phi\rangle)}$$

 $\kappa{<}1$ is incompatible with maximally $\psi{-}\text{epistemic}$ models

Protocol: prepare a set of n+1 quantum states $\{|\psi_0\rangle, |\psi_1\rangle, \dots, |\psi_n\rangle\}$

Projection onto subspace orthogonal to $|\psi_0\rangle = |0\rangle$ Ringbauer, Duffus, Branciard, Cavalcanti, White & Fedrizzi, Nature Physics 11, 249 (2015)

Protocol: prepare a set of n+1 quantum states $\{|\psi_0\rangle, |\psi_1\rangle, \dots, |\psi_n\rangle\}$ for each triplet of states $\{|\psi_0\rangle, |\psi_{j_1}\rangle, |\psi_{j_2}\rangle\}$ perform a measurement $M_{j_1j_2}$ with three outcomes (m_0, m_1, m_2)

Protocol: prepare a set of n+1 quantum states $\{|\psi_0\rangle, |\psi_1\rangle, \dots, |\psi_n\rangle\}$ for each triplet of states $\{|\psi_0\rangle, |\psi_{j_1}\rangle, |\psi_{j_2}\rangle\}$ perform a measurement $M_{j_1j_2}$ with three outcomes (m_0, m_1, m_2) probability for outcome m_i is $P_{M_{j_1j_2}}(m_i|\psi_{j_i})$,

Upper bound on classical overlap

$$S(\{\psi_j\}, \{M_{j_1j_2}\}) = \frac{1 + \sum_{j_1 < j_2} \sum_{i=0}^{2} P_{M_{j_1j_2}}(m_i | \psi_{j_i})}{\sum_{j} \omega_Q(|\psi_0\rangle, |\psi_j\rangle)} \ge 1$$
Quantum overlap

S is an upper bound on how much indistinguishability can be explained by overlapping probability distributions

 $S \ge I$ for maximally Ψ -epistemic models

In principle, for $d \ge 4$, S $\rightarrow 0$ as number of states, n, increases BUT as n increases, number of measurements increases quadratically

In principle, for $d \ge 4$, S $\rightarrow 0$ as number of states, n, increases BUT as n increases, number of measurements increases quadratically

Know your stuff Quantum state tomography

Overlap Deficit

Einstein Ballentine (?) Spekkens Leife

Dirac-von Neumann Many worlds Bohmian mechanics Spontaneous collapse Modal interpretations

U

Adapted from Matt Leifer

There is still room for improvement

High-accuracy waveplates (λ /500 or better)

More stable optical mounts; more precise phase control

Better shielding or active locking of interferometer

Explore full state space

Better stabilization of pump-laser

Measurements on the reality of $\boldsymbol{\psi}$

Implications

Ruled out maximally ψ -epistemic models for systems of dimension >2

Excluded non-maximal models with $S > 0.691 \pm 0.001$

Realist $\psi\text{-epistemic}$ models fail to fully

explain quantum indistinguishability.

Without giving up the notion of objective reality we must: Accept the ontic interpretation of the wavefunction

Consider more exotic ontologies