Ignorance governs quantum experiments

Helmut Rauch

Atominstitut, TU-Wien; Austria

The neutron as a quantum object Coherence Properties Basics of Neutron Interferometry Pre- and postselection Dephasing - Decoherence Weak Measurements Unavoidable quantum losses Résumé

The Neutron

Particle Properties

 $m = 1.674928 (1) \times 10^{-27} \text{ kg}$ $s = \frac{1}{2} \text{ h}$ $\mu = -9.6491783(18) \times 10^{-27} \text{ J/T}$ $\tau = 887(2) \text{ s}$ R = 0.7 fm $\alpha = 12.0 (2.5) \times 10^{-4} \text{ fm}^{3}$ u - d - d - quark structureb m ... mass, s ... spin, μ ... magnetic moment, $\tau ... \beta \text{-decay lifetime, R ... (magnetic) confine-}$

ment radius, α ... electric polarizability; all other measured quantities like electric charge, magnetic monopole and electric dipole moment are compatible with zero CONNECTION de Broglie $\lambda_{\rm B} = \frac{h}{m.v}$ $\lambda_{\rm B} = \frac{h}{m.v}$ Schrödinger $H\psi(\dot{r},t) = ih \frac{\delta \psi(\dot{r},t)}{\delta t}$ &boundary conditions $-\mu B$ two level system

μB

Wave Properties

 $\lambda_{c} = \frac{h}{m.c} = 1.319695 (20) \times 10^{-15} \text{ m}$ For thermal neutrons = 1.8 Å, 2200 m/s $\lambda_{B} = \frac{h}{m.v} = 1.8 \times 10^{-10} \text{ m}$ $\Delta_{c} = \frac{1}{2\delta k} \cong 10^{-8} \text{ m}$ $\Delta_{p} = v.\Delta t \cong 10^{-2} \text{ m}$ $\Delta_{d} = v.\tau = 1.942(5) \times 10^{6} \text{ m}$ $0 \le \chi \le 2\pi (4\pi)$

 λ_c ... Compton wavelength, λ_B ... deBroglie wavelength, Δ_c ... coherence length, Δ_p ... packet length, Δ_d ... decay length, δk momentum width, Δt ... chopper opening time, v ... group velocity, χ phase.

Neutron Interferometry

$$I_0 \propto \left|\psi_0^{I} + \psi_0^{II}\right|^2 \propto A + B \cos \chi$$

$$\chi = \oint_{kds}^{\rho} kds = (1-n)kD_{eff} \equiv -Nb_{c}\lambda D_{eff} = \Delta \cdot k = \Delta k \cdot D_{eff}$$

Self interference

(phase space density ~10⁻¹⁴)

Efficiency of detectors, polarizers, flippers >99%

H. Rauch, W. Treimer, U. Bonse, Phys.Lett. A47 (1974) 369

Instutut Laue-Langevin, Grenoble

Interferometer family

l₀ = c∣ trr + rrt |²

High order interferences

Perfect Crystal Silicon Neutron Interferometer

 $\lambda = 1.92(2) \text{ Å}$

State presentations

Post-selection methods

POSITION POSTSELECTION

Position Post-Selection

contrast

Momentum post-selection

Verification of Schrödinger catlike states

$$I_0(k) \propto g(k) \left[1 - \cos\left(\chi_0 \frac{k}{k\partial}\right) \right]$$

D.L. Jacobson, S.A. Werner, H. Rauch, Phys.Rev A49 (1994) 3196

Wave Packet Structure

M.Baron, H.Rauch, M.Suda, J.Opt.B5 (2003) S341

Time-Post-selection Transparent Slit FAST CHOPPER AUXILIARY PHASE (1° wide) SHIFTER EUTRO Gd_.O_. Neutron Absorber C2-DETECTOR 10-01 Fermi Chopper C3-DETECTOR f = 30,000 rpmStationary Bi- PHASE INTERFEROMETER CRYSTAL SHIFTER Slit Titanium Wrapped Slit FREQUENCY = 45,455 RPM ROTATING CHOPPER 57% DISK WITH SLITS Efficient Detectors v_o =1684 Phase TRAIN OF INTENSITY PULSES BEAM Rotator C2 STATIONARY SLIT INCIDENT PULSE -99% Single Crystal WIDTH (FWHM) 22.0 HS SEPARATION Ax= 7.41 mm At= 4.40 us Neutron Interferometer Efficient - (x) (Å)

H. Rauch, H. Wölwitsch, R. Clothier, S.A. Werner (1992) Phys. Rev. A46, 49

D.L. Jacobson, B.E. Allman, M. Zawisky, S.A. Werner, H. Rauch (1996) J.Jap.Phys.Soc. A65, 94

Dephasing - Decoherence

Magnetic noise fields

Dephasing at low order

Magnetic noise fields

M.Baron, H.Rauch, M.Suda, J.Opt.B5 (2003) S244

Dephasing at high order

M.Baron, H.Rauch, M.Suda, J.Opt.B5 (2003) S244

Magnetic Noise Field

Dephasing

Inelasticity: on resonance

H.Weinfurter, G.Badurek, H.Rauch, D.Schwahn, Z.Phys. B72(1988)195

Off-resonance (Multi photon exchange)

Multi-photon exchange: results

 $v = 7534 \text{ Hz} \rightarrow \Delta E = 3.24.10^{-11} eV$ $<< \Delta E_{beam} = 10^{-4} eV$

J. Summhammer, K.A. Hamacher, H. Kaiser, H. Weinfurter, D.L. Jacobson, S.A. Werner, Phys.Rev.Lett. 75 (1995) 3206

G. Sulyok, H. Lemmel, H. Rauch, Phys.Rev. A85 (2012) 033624

Weak Measurem ents

Absorbing phase shifter

$$\Psi' = \Psi e^{i(\chi' + i\chi'')} = \Psi \sqrt{a} e^{i\chi'}$$

$$\chi'' = (\sigma_a + \sigma_{inc})ND/2$$
 $a = \frac{I}{I_0} = e^{(\sigma_a + \sigma_{inc})ND}$

$$a = \frac{t_{open}}{t_{open} + t_{closed}}$$

$$I_{det} \propto \left[(1-a) \left| \Psi_0^H \right|^2 + a \left| \Psi_0^I + \Psi_0^H \right|^2 \right]$$
$$\propto \left| \Psi_0^I \right|^2 \left[(a+1) + 2a \cos \chi' \right]$$

$$I_{sto} = |\psi_0^I + \psi_0^{II}|^2 \propto |\psi_0^I|^2 ((a+1) + 2\sqrt{a}\cos\chi').$$

J. Summhammer, H. Rauch, D. Tuppinger, Phys.Rev. A 36 (1987) 4447

Absorption results

Small a-case:

 $\chi'' = (\sigma_a + \sigma_{inc}) ND/2$

$$\chi'' \to \chi''_0 + \delta \chi''$$

 $\overline{e^{(\sigma_a + \sigma_{inc})ND}} = \overline{\sqrt{a}} = \overline{e^{-(\chi + \delta\chi^*)}} = \sqrt{a_0} e^{(\delta\chi^*)^2/2}$ $\overline{a} = a_0 e^{(\delta\chi^*)^2}$ $\sqrt{\overline{a}} < \sqrt{a_0}$

P²+V² >1

(Greenberger-Englert relation)

Event by event simulation

H. De Raedt, F. Jin, K. Michielsen, Quantum Matter 1 (2012) 20

Double Loop Visibility

 $\boldsymbol{\chi}_{f}$

3

I V

4

2

1

 $0^{\mathsf{L}}_{\mathsf{O}}$

$$V = \frac{I_{\max} - I_{\min}}{I_{\max} + I_{\min}}$$

$$V_{sto2\Delta_f} = \frac{4\sqrt{T_d}\cos(\chi_f/2)}{4\cos^2(\chi_f/2) + T_d}$$

$$V_{sto2\Delta_f} = 1 \quad if \quad T_d = 4\cos^2(\chi_f / 2)$$

 \Rightarrow hom *odyne* det *ection*

M. Suda, H. Rauch, M. Peev, J.Opt.B:Quantum Semiclass.Opt. 6(2004)345

Stimulated Coherence

Robustness of topological phases

Berry-topological phase 1

Geometric Phases

Berry Phase (adiabatic & cyclic evolution)

[Berry; Proc.R.S.Lond. A 392, 45 (1984)]

$$\begin{aligned} |\Psi(t)\rangle &= e^{-i\phi_d} e^{i\phi_g} |n(R(t))\rangle \\ \phi_d(t) &= \frac{1}{\hbar} \int_0^t dt' E_n(t') \\ \phi_g &= -\frac{1}{2} \mathbf{\Omega} \end{aligned}$$

Non-adiabatic evolution

[Aharonov & Anandan, PRL 58, 1593 (1987)

Non-adiabatic & non-cyclic evolution

[Samuel & Bhandari, PRL 60, 2339 (1988)]

Ultra-cold neutrons at ILL

Spin echo to cancel dynamical phase

Ranstaryt Experiment of the seneral experimental surveys and the seneral phase

Compensation of the dynamical phase

 ϕ_g for different ϑ , i. e. x-offset fields ($\omega = 2\pi/T \approx 30 \text{ rads}^{-1} \cong T = 200 \text{ ms}$, $\omega_L = 1832 \text{ rads}^{-1} \cong B = 10 \mu T$):

Compensation in the case of noise fields

Spin-Echo Setup:

- **X** One cycle: $\psi(\tau) = e^{i(\phi_d + \phi_g)} \psi(0)$
- **×** Spin Echo: $\phi_d = 0$ (spin first in the positive and then in negative eigenstate of the magnetic field Hamiltonian).
- **X** Geometric phase $\phi_g(2\tau) = 2\phi_g(\tau)$

Rubustness of the geometric phase

Predicted by: G. De Chiara and G.M. Palma, PRL 91, 090404 (2003) R.S. Whitney, Y. Gefer, Phys.Rev.Lett. 90(2003)190402

- ★ $\phi_g^0 = 2.58 \text{ rads}^{-1}$, $B = 10 \ \mu\text{T}(1832 \text{ rad/s})$
- **X** noise rms $\sigma_P = 2 \ \mu T(366 \ rad/s)$, bandwidth $\Gamma = 100 \ rad/s$
- $\bigstar \ \overline{\varphi}_g$: averaged over 300 cycles
- ★ State tomography (6 cycles)
- **X** measure degree of polarisation relative to noise-free evolution $v_{rel} = e^{-8\sigma_{\phi g}^2}/e^{-8\sigma_{g0}^2}$

$$\langle \overline{\phi}_g \rangle - \phi_g^0 = 0.0(1)$$
 rad

Unavoidable Quantum Losses

Clothier R., Kaiser H., Werner S.A., Rauch H., Woelwitsch H., Phys.Rev.A44 (1991)5357

REVERSIBILITY-IRREVERSIBILITY

and many other combinations...

Barrier Reflectivity T + R = 1

Parasitic (unavoidable) reflections

What means ignorance?

- There are no quantum complete experiments.
- Plane wave components of wave packets are arbitrary non-local.
- Loss of interference must not be a loss of coherence.
- Topological phases are less sensitive to disturbances than dynamic ones.
- Quantum losses in any interaction are unavoidable.

Compton frequency

as an internal clock?

initiated by: H. Müller, A. Peters, S. Chu, Nature 463 (2010) 926

Larmor interferometry

F. Mezei, Z. Physik 255 (1972) 146

R. Gähler, Golub, J.Phys. France 49 (1988) 1195

COW-Experiment (Colella, Overhauser, Werner)

R. Colella, A.W. Overhauser, S.A. Werner, Phys.Rev.Lett. 34 (1974) 1472

Use of Compton Frequency

$$\lambda_{c} = h/mc$$

Collela R., Overhauser A.W., Werner S.A. Phys.Rev.Lett. 34 (1975) 1053

Peters A., Chung K.Y., Chu S. Nature 400 (1999) 849

Müller H., Peters A., Chu S. Nature 463 (2010) 926

Gravity phase shift

classical motion

$$L_{cl} = \frac{GMm}{r_{\oplus}} - mgz + \frac{1}{2}mx^{2}$$

$$g = GM / r_{\oplus}^{2} \quad and \quad r = r_{\oplus} + z$$

Schwarzschild metric for motion

 $\varphi = \oint k.ds$

$$\frac{\eta^2 k^2}{2m} + mgz = \frac{\eta^2 k_0^2}{2m}$$

 $(\Delta U = -mgH)$

Müller H., Peters A., Chu S. Nature 463 (2010) 926

debate with: Wolf P., Blanchhet L., Borde C.J., Raynaud S., Salomon C., Cohen-Tannoudji, Class.Quantum Grav. 28 (2011) 145017

Wave – Lattice Interaction

Dephasing - Decoherence

G. De Chiara and G.M. Palma, PRL 91, 090404 (2003) R.S. Whitney, Y. Gefer, Phys.Rev.Lett. 90(2003)190402

Variance of geometric phase (σ_g^2) tends to 0 for increasing time of evolution in a magnetic field.

Rubustness of the geometric phase

F. Filipp, J. Klepp, Y. Hasegawa, Ch. Plonka, P. Geltenbort, U. Schmidt, H. Rauch, Phys.Rev.Lett.102 (2009) 030404

Visualisation of the robustness of geometric phases

- Stereographic plots of sample noise realizations (simulation):

- $\boldsymbol{\textbf{X}}$ effective frequency changes
- ✗ less fluctuations in enclosed area for longer T
- **X** less dispersion of ϕ_g