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“A host of important and beneficial 
ramifications—theoretical, compu-
tational, and interpretational—are 
discussed.” 

, Chem. Phys. 370, 4-14 (2010). 



Quantum Mechanics  
Without Wavefunctions  

aka “Many Interacting Worlds” 

Brief Outline: 

1.  First principles derivation / motivation for MIW. 
2.  Comparison between continuous and discrete MIW. 
3.  Various generalizations/extensions of the theory. 
4.  Entanglement and measurement. 
5.  Prospects for experimental validation. 



•  Start “from scratch”; assume almost no knowledge of: 
–  classical mechanics (Newton’s Laws) 
–  quantum mechanics (TISE). 

•  “Trial” trajectory x(t) completely unconstrained 
–  i.e., x(t) is a path, not yet a trajectory. 

•  Posit existence of two “functional forms” of x(t). 
–  f [x] (depends on x; essentially potential energy) 
–  g[  ] (depends on   ; essentially kinetic energy) 
–  NO assumptions are made about form of f [x] and g[ ]! 
–  Space x assumed to be 1D, homogeneous (for simplicity). 

Theoretical/Mathematical Justification 
First Principles Derivation 



Metaphysical Assumption #1: 
Action Extremization 

•  For all possible smooth paths x(t) that connect: 
–  initial point (x0,t0) with final point (xf,tf) 
–  dynamical solution trajectory = x(t) path that extremizes action, S. 

•  Definition of action: 

•  Solution x(t) satisfies Euler-Lagrange equation: 

•  Note: f[x] and g[  ] are still completely unspecified! 
–  e.g.,                    would be permissible.  
–  however, for any specific choice of f and g,  the solution x(t)  

 is now completely determined. 
! 

˙ x 



Metaphysical Assumption #2: 
Hamiltonian Energy Conservation 

•  For all possible smooth paths x(t) with initial conditions: 
 x(t0)=x0   and     
 dynamical solution trajectory = x(t) path that conserves Hamiltonian, H. 

•  Form of Hamiltonian: 

•  Solution x(t) satisfies Hamiltonian energy conservation:  

•  Note: f[x] and g[  ] are still completely unspecified! 
–  however, for any specific choice of f and g,  the solution x(t)  

 is now completely determined. ! 

H[x(t), ˙ x (t)] = H(t) = constant



Combining Both Metaphysical 
Assumptions Together 

•  Either physical constraint by itself leads to a unique set of 
solution trajectories 
–  In general, i.e. for arbitrary choice of f[x] and g[  ],  

 Action extremizing trajectories are not the same as Hamiltonian 
conserving trajectories 

•  Satisfying both conditions simultaneously is very special: 
–  Noether’s theorem: explicit t invariance of L implies existence 

of a conserved energy quantity, denoted E. 
–  Our condition: that Noether E be equal to the Hamiltonian H. 
–  imposes severe restrictions on allowed forms for f [x] and g[  ]. 

! 

˙ x 

! 

˙ x 



•  What are the most general possible forms consistent with 
both action extremization and Hamiltonian conservation? 

 f [x] = completely unconstrained = V[x] 

•  These are precisely the most general possible forms that 
are considered in classical mechanics! 
–  thus, classical mechanics satisfies both of the two physical 

constraints, that we have imposed (already known) 
–  but no other choices for f[x] and g[  ] (i.e., no other candidate 

dynamical laws) can do so. 

! 

g[ ˙ x ] = A˙ x 2 = (m /2) ˙ x 2 = T[ ˙ x ]

! 

˙ x 

Combining Both Constraints 



Quantum Trajectories Derivation 
 1D Stationary Scattering States 

•  Requires modification of the           and            forms. 
•  Requires higher-order time derivatives 

–  consider contact/point transformation from coordinate x to y. 
–  transformed functionals now mix y and  , however... 
–  no new physics added, i.e. result still classical mechanics.  

•  Posit existence of higher-order functionals: 



Quantum Contribution to 
L and H Functional Forms 

•  Space x assumed to be homogeneous (for simplicity). 
•  Posit existence of higher-order quantum correction, Q: 

•  Q resembles a potential energy: 
–  connects to “quantum potential” of Bohm theory. 
–  adds to H but subtracts from L, like a potential energy.  

•  Q resembles a kinetic energy: 
–  kinematic quantity that cannot depend on x. 
–  quantum “potential” actually comes from K.E. operator. 



•  Technical Note:  
–  action extremization via “generalized” Euler-Lagrange eqn: 

•  Allowed meromorphic solutions (dynamical laws): 
 V[x] = completely unconstrained. 
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Functional Form of Q 



Numerical Solution of the 1D TISE: 
Eckart Barrier 

   Solve 4th order real-valued ODE in t, to obtain x(t). 
–  similar to Newton’s second law, w/ extra terms. 
–  two initial conditions specify E and x0. 
–  remaining two specify boundary conditions of solution ! 

Wavefunction density, !(x)  Trajectory, x(t) 



1D Time-Dependent Generalization 

•  The wavefunction ! (x,t) is replaced with an ensemble 
(family) of trajectories, x(C,t). 
–  parameter C labels individual trajectories within the ensemble. 
–  resembles classical statistical mechanics/trajectory simulations. 

•  Trajectories governed by their own self-contained PDE. 
–  we now have “spatial” derivatives in terms of C, (i.e., across 

trajectories), in addition to time derivatives. 
–  allowed forms of T[], V[], and Q[] are identical to time-

independent case, except with C rather than t derivatives for Q[]. 
–  all quantum effects/quantum forces arise from C derivatives, i.e. 

stem from interaction across nearby worlds.  



Copenhagen quantum 
mechanics 

Bohmian mechanics Quantum trajectory-based 
formulation (wavefunction-free)  

! represents the state of 
the system. TDSE 
drives evolution of       
!(x,t). 

! and x(t) together 
represent the state of 
the system. ! leads to 
quantum potential Q, 
driving trajectory via: 

There is no !.  x(t, C) (trajectory 
ensemble) alone represents the 
state of the system, and leads to Q.   
x(t, C)  satisfies its own PDE that 
replaces the TDSE (with ' denoting 
partial derivative w/ respect to C.) 
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Continuous vs. Discrete MIW 

continuous ensemble, x(C,t) 
exact solution of PDE 
unique dynamical law 
action extremization principle 
invariance/symmetry principle 
relativistic generalization 
Heisenberg/many-D/spin 
probability measure required 

natural classical limit 
no trajectory crossing 

Continuous MIW          Discrete MIW 
discrete ensemble, xi(t) 
approximate discretization 
dynamical law unspecified 
unclear at present 
unclear at present 
unclear at present 
under development 
“emergent” probability 

natural classical limit 
no trajectory crossing 



Trajectories for Wavepacket Dynamics 
Arbitrary Dimensionality 

•  Generalization for arbitrary dimensionalities, and non-Euclidean 
metrics, has been thoroughly worked out. 
–  trajectory ensemble now vector field,  x(C,t)  
–  symmetries, conservation laws, stress-energy tensors, etc.    

•  Simplest Euclidean forms presented below: 
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Measurement/Interpretational Ramifications 
Nonlocality and Quantum Entanglement 

Nonlocality in the MIW picture: Consider two “entangled” quantum particles, A and 
B. A change in particle A is associated with an instant change in faraway particle B, 
which seems to violate relativity. The MIW picture describes this nonlocality paradox as 
follows. Let the two black discs represent the positions of particles A and B in our 
world. There is also a neighboring world in which particles A and B also exist, but at 
slightly displaced positions (represented by the open, dashed circles).  The two worlds 
are close to each other, even though the two particles, A and B, are not. 

position space: (x,y) 
configuration space: (xA,yA,xB,yB) 



Measurement/Interpretational Ramifications 
Measurement and “Collapse” 

xA 

xB 1 7 2 3 4 5 6 

Before measurement: no correlation, worlds close!



Measurement/Interpretational Ramifications 
Measurement and “Collapse” 

xA 

xB 
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After measurement: perfect correlation, worlds far apart!



Experimental Validation of 
Many Interacting Worlds ? 

Three potential avenues by which MIW might lead 
to experimental outcomes that differ from those 

predicted by standard quantum theory: 

1.  Higher order contributions (i.e., beyond 4th) to the trajectory-
based dynamical law (continuous MIW).  

2.  Single particle relativistic quantum trajectory predictions 
(continuous MIW).  

3.  “Aliasing” effects due to discretization (discrete MIW). 
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