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PHYSICAL REVIEW X 4, 040002 (2014)

Editorial: Does Research on Foundations of Quantum Mechanics Fit into PRX’s Scope?

And we have invited a Commentary by Bill Poiner from Texas Tech University that we hope
will enhance your understanding of the paper and of our decision to publish it.

The Editors

The Many Interacting Worlds Approach to Quantum Mechanics
Bill Poirier , Department of Chemistry and Biochemistry, and Department of Physics, Texas Tech University,
Box 41061, Lubbock, Texas 79409-1061

A Commentary on:

Quantum Phenomena Modeled by Interactions between Many Classical Worlds
Michael J. W. Hall, Dirk-André Deckert, and Howard M. Wiseman

Phys. Rev. X, 4, 041013 (2014)

About the Commentary author:

Bill Poinier is Chancellor’s Council Distinguished Research Professor and also Barnie E. Rushing
Jr. Distinguished Faculty Member at Texas Tech University, in the Department of Chemistry and
Biochemistry and also the Department of Physics. He received his Ph.D. in theoretical physics
from the University of California, Berkeley, followed by a chemistry rescarch associateship at the
University of Chicago. His rescarch interest 1s in understanding and solving the Schridinger
cquation, from both foundational and practical perspectives.
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“A host of important and beneficial
ramifications—theoretical, compu-

ABSTRACT

In David Bohm's causal/trajectory interpretation of quantum mechanics, a physical system is regarded as
consisting of both a particle and a wavefunction, where the latter “pilots” the trajectory evolution of the
former. In this paper, we show that it is possible to discard the pilot wave concept altogether, thus devel-
oping a complete mathematical formulation of time-dependent quantum mechanics directly in terms of
real-valued trajectories alone. Moreover, by introducing a kinematic definition of the quantum potential,

damental than Eq. (11). Basically, this implies that no quantum ef-
fects can be attributed to the behavior of a single trajectory alone.
Rather, all quantum behavior in nature is due to an interaction
amongst the different trajectories within a given ensemble, with

We conclude with a brief discussion of some of the potential

tational, and interpretational—are interpretive ramifications of the new formulation. In Bohmian

discussed.”

mechanics, there is only one system trajectory, whereas the
present approach offers an entire ensemble of trajectories. If
one presumes objective existence for a single trajectory only,
then the remaining trajectories in the ensemble must be re-
garded as “virtual,” in some sense. On the other hand, one might
prefer to regard all trajectories in the quantum ensemble as
equally valid and real. It is hard to imagine how this could be
achieved, without positing that each trajectory inhabits a sepa-
rate world. It must be emphasized, however, that this version
of the many worlds interpretation would be very different from
the standard form [19-21]. In a nutshell, the latter associates
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Quantum Mechanics
Without Wavefunctions
aka “Many Interacting Worlds”

Brief Outline:

First principles derivation / motivation for MIW.
Comparison between continuous and discrete MIW.
Various generalizations/extensions of the theory.
Entanglement and measurement.

Prospects for experimental validation.

1.
2.
3.
4,
3.



Theoretical/Mathematical Justification
First Principles Derivation

 Start “from scratch”; assume almost no knowledge of:
— classical mechanics (Newton’s Laws)
— quantum mechanics (TISE).

e “Tmal” trajectory x(¢) completely unconstrained
— 1.e., x(¢) 1s a path, not yet a trajectory.
* Posit existence of two “functional forms” of x(?).
— f[x] (depends on x; essentially potential energy)
— g[x] (depends on x; essentially kinetic energy)
— NO assumptions are made about form of f/[x] and g[x]!
— Space x assumed to be 1D, homogeneous (for simplicity).
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Metaphysical Assumption #1:

Action Extremization

» For all possible smooth paths x(7) that connect:
— 1nitial point (x,Z,) with final point (x,,)
— dynamical solution trajectory = x(¢) path that extremizes action, S.

S = [LIx(t), x()d1 = [ (gl X] - /1] Je

Definition of action:

Solution x(¢) satisfies Euler-Lagrange equation:

Ig1,4(%
ox | dt|ox
» Note: f[x] and g[x] are still completely unspecified!

— e.g., g[*]=Cx" would be permissible.

— however, for any specific choice of fand g, the solution x(¢)

=0

is now completely determined.

Y
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Metaphyswal }Assumlptlon 4.

Hamiltonian Energy Conservation

e For all possible smooth paths x(#) with initial conditions:
x(ty)=x, and Xx(Z,) =X,
dynamical solution trajectory = x(#) path that conserves Hamiltonian, H.

Form of Hamiltonian:

H[x(1), x()] = glx()]+ f[x(1)]

Solution x(¢) satisfies Hamiltonian energy conservation:

H[x(t),x(t)] = H(t) = constant

Note: f[x] and g[x] are still completely unspecified!
— however, for any specific choice of fand g, the solution x(7)
1s now completely determined.
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Combining Both Metaphysical
Assumptions Together

 Either physical constraint by itself leads to a unique set of
solution trajectories

— In general, i.e. for arbitrary choice of f[x] and g[x],

Action extremizing trajectories are not the same as Hamiltonian
conserving trajectories

 Satistying both conditions simultaneously is very special:

— Noether’s theorem: explicit 7 invariance of L implies existence
of a conserved energy quantity, denoted £.

— QOur condition: that Noether E be equal to the Hamiltonian H.
— 1mposes severe restrictions on allowed forms for f[x] and g[x].
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Combining Both Constraints

~+ What are the most general possible forms consistent with
both action extremization and Hamiltonian conservation?

f [x] = completely unconstrained = V[x]
g[x]= Ax> =(m/2)x” = T[x]

* These are precisely the most general possible forms that
are considered 1n classical mechanics!

— thus, classical mechanics satisfies both of the two physical
constraints, that we have imposed (already known)

— but no other choices for f[x] and g[x] (1.e., no other candidate
dynamical laws) can do so.
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Quantum Trajectories Derivation
1D Stationary Scattering States

. Requires modification of the L[x, x] and H[x, x]forms.

« Requires higher-order time derivatives
— consider contact/point transformation from coordinate x to y.
— transformed functionals now mix y and y, however...

— no new physics added, 1.e. result still classical mechanics.

 Posit existence of higher-order functionals:
L=L[xxX,...]
H=H[x,x,Xx,...]
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Quantum Contribution to
L and H Functional Forms

. Space x assumed to be homogeneous (for simplicity).

* Posit existence of higher-order quantum correction, Q:
L[x,%,%,...] = T[x]-V[x]- O[#,%,...]
H[x, %, %,...] = T[]+ V[x]+ O[x,%,...]

* (O resembles a potential energy:
— connects to “quantum potential” of Bohm theory.
— adds to H but subtracts from L, like a potential energy.

* (resembles a kinetic energy:
— kinematic quantity that cannot depend on x.
— quantum “potential” actually comes from K.E. operator.
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Functional Form of

 Technical Note:

— action extremization via “generalized” Euler-Lagrange eqn:
oL] d laL} d” [aL) . _,

- ll ) ..
ox | dt|ox| dr |ox

* Allowed meromorphic solutions (dynamical laws):

V[x] = completely unconstrained.
T[x]=(m/2)x"

[ AE = constant order O (classical mechanics)
no solutions order 1
Q[x,X,...] =1  no solutions order 2

-5 (4 ).64 - 2x3) order 3 (quantum mechanics, B = %)
m\4 x X



Numerical Solution of the 1D TISE:

Eckart Barrier

4 | I | I || I | |
~ 2 -
£ 0 'z _
= ol ]
2 k3
=2 !

-4 A | | l | ] A r 1 | 1 ] 1 ] 1 1

-8 -6 -4 -2 0 4 2 0 2 4
time (10" a.u.) position (a.u.)
Trajectory, x(7) Wavefunction density, o(x)

Solve 4% order real-valued ODE in ¢, to obtain x(?).
— similar to Newton’s second law, w/ extra terms.
— two 1nitial conditions specify £ and x,,.

— remaining two specify boundary conditions of solution y
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1D Time-Dependent Generalization

* The wavefunction ¥ (x,7) 1s replaced with an ensemble
(family) of trajectories, x(C.¢).
— parameter C labels individual trajectories within the ensemble.
— resembles classical statistical mechanics/trajectory simulations.

e Trajectories governed by their own self-contained PDE.

— we now have “spatial” derivatives in terms of C, (i.e., across
trajectories), in addition to time derivatives.

— allowed forms of 1T], V], and Q[] are identical to time-
independent case, except with C rather than ¢ derivatives for O[].

— all quantum effects/quantum forces arise from C derivatives, 1.e.
stem from interaction across nearby worlds.



Copenhagen quantum Bohmian mechanics | Quantum trajectory-based

mechanics formulation (wavefunction-free)
Y represents the state of W and x(7) together There is no . x(z, C) (trajectory
the system. TDSE represent the state of | ensemble) alone represents the
drives evolution of the system. V¥ leads to | state of the system, and leads to Q.
Y(x,7). quantum potential O, | x(z, C) satisfies its own PDE that

driving trajectory via: | replaces the TDSE (with ' denoting

iy V) IO partial derivative w/ respect to C.)
ox 0x

0

R (5 x™ 1 x" aV(x) K [ x" x" x" x"
X\ x"x"] = - — - — mx + = — 8 + 10 =0
ol | 2m(4 Xt 2 x’3) 0x 4m \ x'* X x/0
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R S
& Continuous vs. Discrete MI
- J/Continuous MIW Discrete MIW

continuous ensemble, x(C,¢) discrete ensemble, x(¢)
exact solution of PDE approximate discretization
unique dynamical law dynamical law unspecified
action extremization principle unclear at present
Invariance/symmetry principle unclear at present
relativistic generalization unclear at present
Heisenberg/many-D/spin under development
probability measure required “emergent” probability
natural classical limit natural classical limit

no trajectory crossing no trajectory crossing



Trajectories for Wavepacket Dynamics
Arbitrary Dimensionality

* Generalization for arbitrary dimensionalities, and non-Euclidean
metrics, has been thoroughly worked out.
— trajectory ensemble now vector field, x(C,t)
— symmetries, conservation laws, stress-energy tensors, etc.

« Simplest Euclidean forms presented below:

K™' = J = Jacobian matrix (J; =dx'/1dC?)

L=%X-X—V(x)—Q

A2 K. 1 0K" 9K
Q=-—— Kt o J
4m\ 7 oc*oc' 2 9C* oC!
oV R 9 . PK
0 =mx +—=— - o | KKy — =T
ox 4dm JC T aC*aC




Measurement/Interpretational Ramifications

Nonlocality and Quantum Entanglement
;

* ¢ position space: (x,))

9

configuration space: (X ,,Vx,Xg:Vg)
particle A particle B

- X

Nonlocality in the MIW picture: Consider two “entangled” quantum particles, A and
B. A change in particle A is associated with an instant change in faraway particle B,
which seems to violate relativity. The MIW picture describes this nonlocality paradox as
follows. Let the two black discs represent the positions of particles A and B in our
world. There 1s also a neighboring world in which particles A and B also exist, but at
slightly displaced positions (represented by the open, dashed circles). The two worlds
are close to each other, even though the two particles, A and B, are not.



Measurement/Interpretational Ramifications
Measurement and “Collapse”

o

ol 00000606 0

T

Before measurement: no correlation, worlds close

XA



Measurement/Interpretational Ramifications
Measurement and “Collapse”

After measurement: perfect correlation, worlds far apart



Experimental Validation of
Many Interacting Worlds ?

Three potential avenues by which MIW might lead
to experimental outcomes that differ from those
predicted by standard quantum theory:

1. Higher order contributions (i.e., beyond 4) to the trajectory-
based dynamical law (continuous MIW).

2. Single particle relativistic quantum trajectory predictions
(continuous MIW).

3. “Aliasing” effects due to discretization (discrete MIW).
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