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Three elements: QI G
Quantum, Information and Gravity

e Quantum € Quantum Mechanics € Quantum Field Theory
Schroedinger Equation | | micro

e Gravity € Newton Mechanics € General Relativity | Macro

e GR+QFT= Semiclassical Gravity (SCG)

e Laboratory conditions: | Strong Field Conditions:
Weak field, nonrelativistic limit: | Early Universe, Black Holes

Newton Schrodinger Eq (NSE) | Semiclassical Einstein Eq



Two layers of theoretical construct:

(1 small surprise, 1 observation)

1) Small Surprise?:

NSE for single or multiple particles is not
derivable from known physics

C. Anastopoulos and B. L. Hu, Problems with the Newton-Schrodinger
Equations New ]. Physics 16 (2014) 085007 [ arXiv:1403.4921]

Newton-Schrodinger Eq <=/= Semiclassical
Einstein Eqn of Semiclassical Gravity

(this nomenclature is preferred over M¢ ller-Rosenfeld Eq)



Semiclassical Gravity

Semiclassical Einstein Equation (Moller-Rosenfeld):

A ._.I"',‘

G,u.u (Qmﬁ’) — ﬁ.<'Tﬂ_y>q+ K (Tpv) C

(7., is the Einstein tensor (plus covariant terms
associated with the renormalization of the quantum field)

r = 81y and G 1s Newton’s constant

Free massive scalar field , X
(d—m~—&R)p =0.

1, 1s the stress-energy tensor operator
o 2\
()4 denotes the expectation value



Now bring in the most basic element
in quantum information

Take the issue of Quantum Entanglement

Examine the expectation value not wrt a vacuum state
(vev), but, say, a cat state:

| +->= 1/V2 (lleft> +- [right>) |.....0.....]
-X +x
2) no Surprise:

One should know that SCG is not sufficient for QI,
since it gives the mean value of the stress energy
tensor Tmn, which predicts wrongly that the cat is at
x=0.  No Superposition, not quantum.



e Need to include contributions from the fluctuations in
addition to the mean <Tmn> (from SCG)

* Correlations of the stress energy tensor <I'mnTrs> is
needed to address issues in quantum
information with gravity (Relativistic QI, or RQI)

e There is such a theory, Stochastic Semiclassical
Gravity (SSG), based solely on GR+QFT.

No new invention needed (or allowed).

* Just need to work things out carefully with
experiments in mind. --- We are attempting this now:



Stochastic Gravity

Einstein- Langevin Equation (schematically):

A~

G:u'” (gﬂ.ﬁ) — K (TC 4 TSE)

%

177, 1s due to classical matter or fields

A

T9 = (T,,) + 1°

[V L

1> 1s a new stochastic term

related to the quantum fluctuations ot 1,



NOISE KERNEL

e EXp Value of 2-point correlations of stress tensor: bitensor

* Noise kernel measures quantum flucts of stress tensor

It can be represented by (shown via influence functional to be
equivalent to) a classical stochastic tensor source &, [g]

<‘§ab>s =0 <§ab (X)fcd (y»s — Nabcd (X; Y)

« Symmetric, traceless (for conformal field), divergenceless



Einstein-Langevin Equation

o Consider a weak gravitational perturbation h off
a background g 2. =g\ + .. The ELE is
given by (The ELE is Gauge invariant)

Gaplg +h]+ A(gap +hap) — 2(aAgp + BBap)|g + 1]
= 8nG((Th, g+ hl) + Eanlgl).

= Nonlocal dissipation and colored noise
Nonlocality manifests with stochasticity
because the gravitational sector Is an open system



Stochastic (Semiclassical) Gravity for
Strong Gravitational Field Conditions

* For problems in the early universe and black holes, one is
interested in quantum processes related to the vacuum
state, e.g., particle creation, vacuum fluctuations, vacuum
polarization. (e.g., Hawking Effect).

* Vacuum Expectation Values of Tmn or Tmn Trs taken
wrt a vacuum state.

* In analogous laboratory settinés, with moving detectors
mirrors  (e.g. Unruh Effect, dynamical Casimir Effect)

Review: B. L. Hu and E. Verdaguer, “Stochastic gravity: Theory and
Applications”, in Living Reviews in Relativity 7 (2004) 3.
Updated in LRR11 (2008) 3 [arXiv:0802.0658]




Weak field, non-relativistic Limit

* The Einstein-Langevin Equation should
provide a legitimate stochastic source
arising from the fluctuations of the matter
quantum field because it is from GR+QFT

e This should be the cannon for all AQT
(alternative quantum theories) invoking
stochastic sources to be compared with

This work is beginning. See recent work of T P Singh & co.



Quantum Information Issues in
gravitational quantum physics

e New emphasis: not vacuum state, but one
particle and n particle states: That's OK

|Squeezed states can be handled. In fact,
cosmological expansion is squeezing.

But for quantum superposition states
e Bell states, etc. SCG cannot handle



Look for the Gravitational
Quantum Cat from the
fluctuations of energy density, or
the correlator of the stress energy
tensor: the Noise Kernel

(Not the full Schrodinger cat - some quantum tributes of the cat)



2.1. Nonrelativistic N Particle System

Consider a scalar quantum field ¢(r) and its conjugate momentum 7(r)
of the creation and annihilation operators ayx and (}L

; A’k [ iker k-
olr) = — axe + al e r]
(r) / (27)3 /2w k!

_ >k
\(r) =1 (27‘;‘ :
For a free field, the Hamiltonian operator 1is
A Bk
H = / — wkuf{uk.

where wy, = VK2 4+ m?2.

In the non-relativistic regime we define the fields
3 3
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Mass density operator of a
non-relativistic N-Particle System

The Hamiltonian then becomes

H=m /drr,""‘(r) (r) — i (’11'1;'-'~T(1“)V2t—*(:1'). (11)

2m

We will denote the second term in Eq.(11) as Hy because it corresponds to the Hamiltonian for
N non-relativistic particles. The first term in Eq.(11) corresponds to Nm, for an N-particle
state. Hence, the number operator N 1s

N = / dryt (r)d(r) (12)

This suggests that mif(r)u(r) can be identified as the mass-density operator fi(r).
We include the effect of a confining potential V'(r) , by modifying the field Hamiltonian

H=m /(lr'L:'T(l{)zj-(r) o+ /dre,:"‘(r) [—ivf + 1'(1‘)] z;'_'(r_). (13)

2m



Mass Density Correlations

2.2, Mass-density correlations, noise kernel

In the non relativistic limit, the dominant component of the stress tensor 7, is the energy
density, which 1s dominated by the mass density, namely

T (r,t) = 0,0, (. 1) (14)
Thus, it suffices to calculate the correlation functions of the Heisenberg-picture operator
f(r,t) = ,thfi(I‘)Eﬁ_th. (15)
We assume an one-particle state
5= [ deate)it o), (16)
where ¢(r) is the one-particle wave-function.
We find
(u(x,8)) = (Dlia(r, Do) = me* (v, D) (x, 1) (17)
(o, (e, #)) = 6 (e, )d(x', £)Gx, 50, ¥) (1)

where ¢(r,t) is the time-evolved single particle wave function and G(r,t;1r',t') is the one-

particle propagator,

G(r,t;r,t') = (1"|.¢_':-_""H':”_”|r). (19)



Noise Kernel

For a free particle,
m o\ 3/2 im(r —r')? .
Gr.t:r', 1) = ( ) exp 20
L G Pl = (20)

We note that the two-point correlation function 1s complex valued. In general, 1t does

not define a stochastic process. However, the real part,
E(r,t50', ) = Re(u(x, )u(r', ), 21)

known as the noise kernel, corresponds in some cases to the two-point correlation function
of a stochastic process.

Of importance 1s also the connected two-point correlation function for the mass densities

n(r,tx, ) = (u(r, )u(’,t')) — (u(r, 1)) (u@’, ). (22)



Smeared Mass-Density Function

e Inrealistic systems the mass density is not defined at a sharp spacetime point
but smeared over a finite spacetime region.

e In actual experiments, the particles under consideration (atoms) have a finite
size d and it is meaningless to talk about mass densities at scales smaller than
d, unless one has a detailed knowledge of the particle's internal state.

e For this reason, rather than the exact mass density function, we consider a
smeared mass density function:

fig(r, 1) = /(11"f(1' — (. t), (23)

for some smearing function f(r) of dimension [length|™, centered around r = 0. The
smearing scale ( is defined by the condition ¢ = 1/ f(0).

We define the positive operator

[([1 g(r —")|e") (x|, (24)
where ¢g(r) )/ f(0).



Wigner function representation

e For afree particle, we can express the correlation functions in
terms of the Wigner function W (r, p) of the initial state.

e For scales of observation much larger than /, we have

(ts(r, 7))

(ps(r, s (x', 1)) =

m

(2m)?

i t
/d-pﬁfo(r -2 p)
. m
m® W (r+r’ =)+t
rB3(t—t)3 O 2 2t — t')

r—r'
m f
t—1

)

e For an initial state with vanishing mean momentum, we obtain a
stationary process.

(ps(r,
(1s(r,

) = mlo(r)[
De(x', 1) = m? o (rp8(x — '),

Quantum feature: A classical charge
distribution would involve | d(r)|%.



Key features of correlations
of quantum systems

Mass density fluctuations are

*Of the same order of magnitude as the mean mass density
This property seems to be generic in stress-energy fluctuations
(Kuo+Ford 93, Phillips+Hu 97,00).

eHighly non-Markovian. They are unlike any classical stochastic process.

Fluctuations of the mass density generate fluctuations of the Newtonian force
through Poisson’s equation. =» Exploration of Newton-Schrodinger Eq and AQT
Beware of these features



Measured values of correlations

Temporal correlation functions of quantum systems are highly contextual
(Anastopoulos 04,05).

A characteristic feature of quantum correlations exemplified by the
Leggett-Gard inequality (or temporal Bell inequalities).

e By contextual, we mean that the measured values depend strongly on the context of
measurement, i.e., on the specific set-up through which the correlations are measured.

e To compare, all samplings of position correspond to probabilities that closely
approximate the ideal distribution | (r)|>.

e There are no ideal distributions for generic multi-time measurements. Probabilities are
highly sensitive to the details of the sampling.

e Hence, there is no intrinsic stochastic process that describes the mass density
fluctuations of a particle, but

e Any stochastic process that describes the experimental data depends on the specific
procedure through which the measurement is carried out.



Gravitational Cat State:

Direct bearing of Quantum Optomechanics

detector A particle of mass m in a confining potential with
two minima. Assume that the distance L between the minima
is much larger than the width of the localization region.

Y The system can be approximated by a qubit
with defining states |+> and |->.
‘I“ -> g ‘I\ > / . . 24 ~ - .
fl\ / ;‘\f Hamiltonian H = v &;, where v is the tunneling rate
' between the two minima.

-L/2 L/2

e The famous AtOMIC cat of Wineland et al (1996) had L = 80nm and m = 8 amu.

The cattiness record seems to come from the Ardnt 2012 diffraction experiment
with L =100nm and m =1300 amu. Bassi’s review has more recent data
Record for weakest force measured from CalTech ? (2014), ~ 4 x 1023 N.

e Recent experiments on entanglement between massive objects: Aspelmeyer’s work-
Indirect (entanglement with third party measured); Direct (Calvendish expt)

* Romero-lsart’s superconducting microsphere gives the most stringent limit on NSEq ?



Measurement by a classical probe

Consider a particle of mass m, near the particle of mass m that was prepared in a cat state.

detector

We evaluate the » component of the Newtonian force exerted by the two-level system
on the test particle. Again denote a = =. If the system lies on the minimum of the potential
at © = al/2, the force F,(a) exerted on the test particle in the x direction is

GmmgL
Fila)=- a=—foa
:l'( ) 2(y2_|_LQ/4)3/Q f[l

Assuming that the test mass is not allowed to move, the force F, takes only two values f;

(62)

and — fy. These values are correlated with the projectors P,, Eq. (48). Thus F, corresponds
to a self-adjoint operator P, — /'X iz /'Y dy /'X dzla,y, 2wy, 2|

F=fifet hP-==fbs o [ o [T oot (6

on the 2-state system’s Hilbert space. Thus, the gravitational force behaves as a quantum
variable, its probabilities and correlations determined by quantum mechanics.



Measurement by a classical probe

Since Newton’s law is instantaneous, a force will be
recorded by the macroscopic probe at all times.

1 Thus we have a continuous-time measurement for a
e qubit.

Fy Typical time series of force measurements

\ [
\ \
Ve R 4= f
I‘._ A / A J‘.
\ y 'YV
- .y

12 L2

Essentially similar to the quantum jump expts of Dehmelt et al (86).

Calculate the correlation functions of the force from the quantum probabilities for a continuous-time measurement

2
(F(t)) = —foe™ ! T V™T  tis the temporal resolution of the

2 ’  probe.

Non-Markovian, obtained for vt << 1.



Measurement by a quantum probe 1

detector

e Coupling through the Newtonian force to a quantum
harmonic oscillator constrained to move along the x-axis.

Now consider a quantum probe made of a harmonic oscillator of frequency w that is
constrained to move along the horizontal axis as in Fig. 1. The Hamiltonian of the harmonic
oscillator probe is

Hp =wa'a (68)

If the amplitude of the oscillations is much smaller than L, the length scale of the cat state,
the force acted upon the oscillator along the = direction is approximately constant and equal
to Eq. (62). This corresponds to an interaction Hamiltonian

. . fo . . .
H; = —fo630 = ————5q(a + al), 69
Thus, the total Hamiltonian of the two state system interacting with the oscillator probe
is
H:H5+HP+H;:i/&1+w{iic’i+gérg(é+fiﬂ, (70)
where the system Hamiltonian Hg is given by Eq. (56) specialized to y = 0, i.e., it is

equivalent to the Hamiltonian of a single-mode Jaynes-Cummings model with a coupling

constant Eq. (56) H_8:= v(cos x&, + sin ya)

g=——. (71)
2mow Q

Equivalent to the Jaynes-Cummings (JC) model of quantum optics.



guantum probe 2

e Ifthe oscillator is to act as a measurement, the coupling term

"""""""""" I should be strong, it cannot be treated as a small perturbation.
| e  Thus we cannot use the commonly employed Rotating Wave
Approximation.
’ ¢ JCmodel was recently shown to be integrable (Braak 11), but

the solution is not helpful in finding time evolution.

"\ [ N |

N Consider adiabatic regime{ =0 (vanishing tunneling). Then for the oscillator
probe initially in the vacuum and the cat particle in c, |+> +c_|->,

-2 L2

|§[J(t)> — e?%zg[w‘f—sm(wﬂ C+|C(t)> (74}
c-|=<(t) )
where the path
C(t) = _2(1 — e, Coherence state representation (75)
w
describes an oscillation centered around (o = —< = \/quig The center of the oscillation
e mpow
corresponds to position zg = mii,& and momentum pg = 0.

We obtain a superposition of two oscillations around different centers.
The centers are distinguished only if |<(y|-(,>| << 1, or

2
;: 0
w? << Jo mo.
mo



detector

guantum probe 3

Treat small values of v as perturbations of the adiabatic solution.

4.2.2. Rabi oscillations A finite value of v allows for transitions between the two
gravitational quantum states, which induce transitions among the phase space paths of the
oscillator. While the model is not exactly solvable, we can estimate the rate of such transitions
using perturbation theory with respect to the tunneling rate v. In Appendix B, we show that
to leading order in v, e—i#t = e—iflot(), where

A cos vt —isin VtD(QCD)
O = ( —isin.r/tD(—QCO) cos vt ' (79)

As an estimate of the transition between the two gravitational quantum states, we
compute the amplitude (—(y, —|O;|Co, +), between the stationary states |(y, +) and | — ¢y, —).
We find

(—Co. ~|O1|Co, +) = —isinvt, (80)
and thus the associated probability
p(t) = [(=Co, —[Oc[Go, +)[* = sin® v, (81)

exhibits Rabi-type oscillations, with frequency v.

Then we obtain Rabi oscillations of frequency v between the two centers {, and -{,

Coherent state plane

Rabi transition




Implications

Since the gravitational field is slaved to matter, the gravitational force is
represented by an operator on the Hilbert space of the matter field.

Thus, the standard operational procedures in QM can be invoked for

measuring a gravitational force.

Standard interpretation: weak field

e Once we measure a force F on a test
particle of mass m, we can calculate the
field strength g=F/m.

e The field strength corresponds to a
gravitational potential .

e In the weak field limit of GR, the potential
appears in the g,, component of the
metric tensor.

But what does this mean?

From the vantage point of GR:
Spacetime & quantum matter intimately linked

Do quantum fluctuations of the force define
quantum fluctuations of the spacetime geometry?
[stochastic gravity addresses this issue]

Operational definitions of spacetime geometry
seem to agree on that.

[f this is true, the state we considered here is a
genuine gravcat, a quantum superposition of
two spacetime geometries.



Discussions

Does the gravitational force remain slaved
to the mass density as classical GR dictates
, even if the latter behaves quantum
mechanically? (it has fluctuations, itis
subject to quantum measurements, etc.)

In principle, we can construct probes that
record quantum jumps of the
gravitational force. Can we talk about q
jumps on the gravitational potential? And
then about jumps of (not just in) the
induced quantum spacetime?

Invoking gravitational decoherence (grav
field as environment to quantum
systems) to Kill gravcats may solve the
problem above, but the intrinsic tension
between GR +QM remains.

We can only answer this questions by
attempting to construct gravcats,

or other non-classical states for Macroscopic
systems. Optomechanical systems seems

to be the most promising route.

Does this idea even make sense?

The conceptual tension between GR and QM
such as spelled out by Penrose, already
manifest in the Newtonian regime.

The interface between macroscopic quantum
phenomena and gravitational quantum physics
is of fundamental significance from this
perspective.



Perspective

In view of advances in AMO,CMP and Optomechanics
precision experiments in weak gravitational fields

-- Gravitational Quantum physics (Focus Issue in NJP 2014)

it pays to reexamine the WF-NR limit of
1) semiclassical Einstein Equation, (in relation to NSEq etc)
2) Noise kernel, or stress energy density correlators (new)

Bringing gravity into consideration of issues in
quantum foundations such as the Born Rule; and
quantum information such as the Cat State with gravity



Conclusion: Investigation of Q Information issues
of gravitational systems using quantum probes

e Quantum Gravity (theories for the microscopic structures of
spacetime) is not needed.

e Focus on systems under laboratory conditions:
nonrelativistic systems, weak gravitational field.

e Semiclassical Gravity is inadequate.

e Focus on fluctuations and correlations of mass density --
incorporated in Stochastic Gravity Theory

Big Quest: Can we infer attributes of spacetime fluctuations
from quantum experiments even at the level of Newtonian
gravity without appealing to new theories of QM or GR?



Thank you for your attention!

& the Organizers for their nice work






Theoretical Motivations:
Frontier & Foundational Issues

0. Innate conflict between the fundamental principles of
general relativity and of quantum mechanics

1. Macroscopic Quantum Phenomena [Dice 10,12]

Different MQ behavior in e.g., BEC, Superconductivity, crystals: How the
micro-constituents are organized.
Issues: Quantum Coherence, Q. Correlation, Q. Entanglement

2. Emergent Quantum Mechanics

. Are there fundamental changes as one traverses between the micro and the
macro domains? New laws for meso-physics? (e.g., Leggett)

. Sublevel structure which in some limit shows up as quantum mechanics

. Emergent gravity: Both emergent from the same sub-structure.

3. Quantum Information: How it enters in Physical Reality
and the formulation or even the advent of Physical Laws |It-Bit]



Alternative Q Theories

L Diosi (84,87,89) R. Penrose, Phil. Trans. R. Soc. Lond. A
(1998) 356, 1927-1939 / GRG (96)

-Advocate gravity as the source of decoherence of quantum particles.
-Proposed different forms of Newton-Schrodinger Equation NSE
- But we find that NSE cannot be derived from QFT + GR

e GRWP: G.C. Ghirardi, R. Grassi, A. Rimini, Weber and Pearle

Phys. Rev. A42, 1057 (1990).; Pearle. Changing QM, We view this class of
theories as expressing a wish: That at a certain scale between the micro and
macro, the wave function collapses: “ localization”. Less concerned with Why

Both classes of theories are Phenomenological, not Fundamental.

o Viewing QM as Emergent: Proposals of sub-level theories
S. L. Adler’s book and recent papers, ‘t Hooft’s papers

Excellent Review by A. Bassi et al, Rev. Mod. Phys. 85, 471- 527 (2013)



e Recall: Consider a wave function composed of
2 Gaussian packets located at +Lo and -Lo

Hu Paz Zhang PRD 92
Paz Habib Zurek PRD 93
W(x,t=0)=W,(x)+W¥,(x),

where
(x FLy)? _
W, (x)=Nexp |— 557 exp(LiPyx) ,
°
~1
N*_ 1 Lj

2 __ — _ =0 __g2p2

N = 51 5282 1 +exp 52 O°Pg




Decoherence in QBM models:
1 HO System- nHO bath

1

[x,q, ] fds 2M(fc 2—Qoxz)+2--—m 1y —wiqr)

, (3)

— > C,xq,
n

W(x,t=0)=W,(x)+W¥,(x),

where
(x FLgy)?
W, (x)=Nexp |— e exp(LiPyx) ,
-1
N2 1 o
2 __ — _ __R2p2
N°= 5 2252 1+exp 52 O°P;




Pointer
Basis:
Interaction
Hamiltonian

left: xq
right: pp

t=0.001

FIG. 2. The time evolution of initial conditions 4 and A’.
The oscillations disappear faster in the first case since the envi-
ronment can distinguish between the two peaks. In the second
case, the interference is damped over a dynamical time scale.



Gravitational Cat State:
a conseguence of the intrinsic conflicts of Q + G



Penrose (1996) “On gravity's role in quantum state reduction”.
Gen. Rel. Grav. 28, 581-600 [ just read the letters in red below:]

Addresses the question of the stationarity of a quantum system
which consists of a linear superposition |y> =|o> + [B> of two
well-defined states |oo > and |B >, each of which would be
stationary on its own, and where we assume that each of the
two individual states has the same energy E

99 _ gy 128 _ pigy.
ot ot

Just QM alone: If gravitation is ignored, then the quantum
superposition |y> = alo> +b |> would also be stationary,

with the same energy E and this is the normal supposition.

a\Y)
ot

1

_EIL"'



With Gravity: However, when the gravitational fields of
the mass distributions of the states are taken into account,
we must ask what the Schroedinger operator g/t
actually means in such a situation.

Let us consider that each of the stationary states |o. > and |3 >
takes into account whatever the correct quantum
description of its gravitational field might be, in
accordance with Einstein's theory.

Then, to a good degree of approximation, there will be a
classical spacetime associated with each of |a> and |3>,
and the operator §/9¢ would correspond to the action
of the Killing vector representing the time displacement of
stationarity, in each case.

Stationary state makes demand of spacetime properties.
Clash between QM and GR



Now, the problem that arises here is that these two Killing vectors
are different from each other. They could hardly be the same, as
they refer to time symmetries of two different spacetimes.

It could only be appropriate to identify the two Killing vectors with
one another if it were appropriate to identify the two different
spacetimes with each other point-by-point.

But such an identification would be at variance with the principle of
general covariance, a principle which is fundamental to Einstein's
theory. According to standard quantum theory, unitary evolution
requires that there be a Schr 'odinger operator that applies to the
superposition just as it applies to each state individually; and its
action on that superposition is precisely the superposition of its
action on each state individually.

There is thus a certain tension between the fundamental principles
of these two great theories, and one needs to take a position on
how this tension is to be resolved.



Penrose’s position is (provisionally) to take the view that an
approximate pointwise identification may be made between the
two spacetimes, and that this corresponds to a slight error in the
identification of the Schr odinger operator for one spacetime
with that for the other. This error corresponds, in effect, to a
slight uncertainty in the energy of the superposition.

One can make a reasonable assessment as to what this energy
uncertainty E; might be, at least in the case when the
amplitudes a and b are about equal in magnitude.

This estimate (in the Newtonian approximation) turns out to be
the gravitational self-energy of the difference between the mass
distributions of the two superposed states. This energy
uncertainty E is taken to be a fundamental aspect of such a
superposition and, in accordance with Heisenberg's uncertainty
principle, the reciprocal hbar/E_ is taken to be a measure of the
lifetime of the superposition (as with an unstable particle).

The two decay modes of the superposition ‘\V> =a |a> +b |B>

would be the individual states [ > and |B >, with relative
probabilities  |al|? : |b|?.



. . . . . . . . 0D =
If the sampling function g is a characteristic function of some set (i.e., if g° = g), then P,
2
— r
is a projection operator. Here, we will consider Gaussian functions of the form g(r) = e 2%,

where s, 1s the width of the sampling. In this case, P, 1s an approximate projector. The

corresponding smearing function 1s

bo
[ }

fr) = —— 732 (25)

= 79.\3/2.3
(27)>/=sy

and corresponds to ¢ = v/27s,.
The correlation functions of the mass density become

(s, ) = (01 Pral0) (26)
(s, )t/ ) = T (&l PuPer]8), (27)

where Prt — ¢ifl tf-:’re_ig * 1s the Heisenberg-picture evolution of Pr.
The expectation value of the smeared mass density 1s proportional to the probability of
a position measurement at time ¢. The two pomnt correlation function 1s proportional to the

decoherence functional
D(r,t;v' 1) = (¢|Po Porsr|d) (28)
for a pair of histories one corresponding to a position record r at time ¢ and the other to a

position record r’ at time #'. As explained by the decoherent histories approach to quantum




Decoherence Functional

1.3 Relation to the decoherence functional

The identification of the expectation values (13) does not correspond to the ¢
functions of a physical process, because 1 realistic systems the mass dens
defined at a sharp spacetime point but smeared in finite spacetime region.
experiments, the particles under consideration (atoms) have a finite size d
meaningless to talk about mass densities at scales smaller than d, unless
detailed knowledge of the particle’s internal state.

For this reason, rather than the exact mass density function, we consider ;
mass density function

;:fﬁ(r? t) - /dl‘ff(l, _ Iif)lll_}.(l‘? T)1

where f(r) is a Gaussian smearing function

1
J0) = G ™

and ¢ 1s the length scale of the smearing region.



We define the positive operator

Po= [ s =)l (19)

that (modulo a multiplicative constant) represents an approximate measurement of
position with a width 6 around r.
The correlation functions of the mass density become

(115(x,8)) = (9] Prl) (20)
(s (0, 1)1 (v, 1)) = (0| Pet Porer| ), (21)

where Prf = e"htpre_ih’ 1s the Heisenberg-picture evolution of 15,..

We observe that the expectation value of the smeared mass density is proportional
to the probability of a position measurement at time f, and the two-point correlation
function is proportional to the decoherence functional between two histories, one
corresponding to a position record r at time ¢ and the other to a position record r’ at
time ¢,

1.4 Calculating the projectors

Next, we proceed to an evaluation of the smeared correlation functions (21). It is

convenient to work in the Wigner-Weyl representation, in which an operator A on the
Hilbert space of a particle is represented by a function F'; on the associated state space.

Fy(x,p) = ] dy (x — T Apx + 3)e. (22)



Wigner-Weyl Transform

First, we evaluate the Wigner-Weyl transform of P, ,, which we denote as F,.,. We

assume that A corresponds to a free particle. Then

Fru(x,p) = f(r—x— 2. (23)

m

Next, we evaluate the Wigner-Weyl transform Fi ;.. of the product Py P that
appears in Eq. (21). Within a semiclassical approximation,

Frivp(xX,p) = Frix,p)Frv(x,p), (24)

which implies that

F L[ i et pl+t)\? (=t r—\ o
et (X, P) = (27073 exp | =53 (X ——5 + o ~ gz \PTmy g (25)

1.5 Ewvaluation for different initial states

Using the noise kernel to analyze the mass density correlation
of a Cat State in a double well potential



Gravitational Effects of Quantum Matter

What is the gravitational field generated by a
guantum distribution of matter?

A popular answer: if Y(r) is a single-particle’s
wave function, then m |{(r)|? is the mass
density p(r), and we solve Poisson’s equation to
obtain the gravitational potential.
! 2

Vi, r) = —Gm fdr’%
This is wrong, or at least this is not what QM
states.

Involves mixing QM with mean field theory.

leads to Newton-Schrodinger (NS) equation

.0 1
i = — V2 + V1Y,

at

often employed in relation to gravitational
decoherence.

The NS equation follows from the non-relativistic
limit of semiclassical Einstein (SCE) equations

G = 87G (V[T | W),

However, an equation such as the SCE follows from a
quantum theory only as a Hartree approximation, which
does not apply to single-particle states|W>.

It presupposes new physics in the relation between mass
density and gravitational forces.
Hu+CA 14, Bahrami et al 14, Giulini +Grossardt 14



Fluctuating gravitational force

The mass density (the stress energy
tensor in general) is a guantum
observable, defined in the Hilbert space
of the associated QFT.

In the Newtonian regime, the gravitational
potential V is completely slaved to the
mass density via Poisson’s equation. If
the mass density is represented by an
operator, so is the potential.

This does not necessarily imply
guantization of gravity, which usually
refers to the true degrees of freedom.

It means that any measurement of the
gravitational force involves probabilities
that are defined in terms of the_mass
density operator.

Beyond the Newtonian regime, the analogous
statement is that the SCE equation is not
enough.

Stochastic gravity program: include fluctuations
of quantum fields as a part of the total source
driving the Einstein equation (Hu, Calzetta,
Verdaguer, Roura, 93-now).



The mass density operator

Write the non relativistic limit of a scalar field theory.

Consider a scalar quantum field ¢(r) and its conjugate momentum 7(r) expressed

in terms of the creation and annihilation operators ayx and aj,

—ik-r

N dz’lf ~ ik-r ~F
!f)(I') :/W H |:(Ik€ k + (Ika_ }

. . Bk [w ke At iker

For a free field, the Hamiltonian operator is
- A3k
o= [ ——wala,
(2m)2 7k
where wy = vVk? +m?.
In the non-relativistic approximation, we define the fields
A3k

- A3k . « .
b= [ gt 0= [ ke

We define a reqularized mass density operator
R Lt RYYR AN
jis(e)=m [ de' f(r' — )" ()d(r),
using a smearing function fg(r) that satisfies the conditions

(i) fs(r) = 0.
(ii) limg_p fs(r) = &3 ().
(iii) [ d*cfo(r) =1

2m

H=mN — )i dri T (r) V2 (r) + /a’I‘V(I‘)t\’i{I‘)'L’\-’(I‘) - G'fafrdr”u5

(13)

(14)

(15)

(16)

(2t

(1)fs(x').

v

Non-relativistic fields are simply
the creation and annihilation
operators in position basis.

Mass density operator must
be regularized (regularization is very
simple in Newtonian regime).

s is the smearing length-scale.

Hamiltonian including Newtonian
Interaction and external potential



Correlations

Define smearing scale | by f,(0) = I°.

_ !
Define positive operator B, = [ dr'% |r') (r'|

It represents a position sampling of width I.

We assume an one-particle state

16) = / dr () (1)]0),

where ¢(r) is the one-particle wave-function.

'1'he correlation functions ot the mass density become
m

(,U-S(I': t)> - /3 (O|pr,f|o>

Iyl m-, 5 F |
<,L£-S(I'3 t):us(r X )) = F<G|Rtpr’f*|o>

where P, = ¢ P,e~Ht is the Heisenberg-picture evolution of P,.

In general, correlation functions of the mass
density correspond to elements of the
decoherence functional for position samplings.
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