Weak values, Local Momentum and Structure Process.

Basil J. Hiley.

http://www.hep.ucl.ac.uk/qupot/.

Bob Callaghan David Robson Maurice de Gosson

Peter Barker

Rob Flack

Pete Edmunds

Vincenzo Monachello

Joel Morley

EMERGENT SPACE-TIME and CLASSICAL PHYSICS.

Take quantum physics as basic.

NO! It is about **PROCESS**, **ACTIVITY**, about **BECOMING**.

[Bohm. Space, Time, and Q.T. Understood in Terms of Discrete Structural Process, Proc. Int. Conf.' Kyoto, 252-287, (1965).]

1. To explain and develop the mathematics we need to describe **STRUCTURE PROCESS**.

Artist's impression of structure process.

This sculpture can be seen on the South Bank of the river Thames in London

EMERGENT SPACE-TIME and CLASSICAL PHYSICS.

Take quantum physics as basic. Is it about material objects moving in space and time?

NO! It is about **PROCESS**, **ACTIVITY**, about **BECOMING**.

[Bohm. Space, Time, and Q.T. Understood in Terms of Discrete Structural Process, Proc. Int. Conf.' Kyoto, 252-287, (1965).]

1. To explain and develop the mathematics we need to describe **STRUCTURE PROCESS**.

We need an **ALGEBRAIC** description of quantum phenomena.

Orthogonal and symplectic Clifford algebra. Geometric algebras [Hiley,Process, Distinction, Groupoids and Clifford Algebras, Lecture Notes in Physics, vol. 813, 705, Springer (2011)]

- 2. I will show how the standard quantum formalism and classical mechanics emerge from this structure. [de Gosson and Hiley, Found Physics, 41 (2011), 1415-1436.] [de Gosson and Hiley, Phys. Letts. A 377 (2013) 3005–3008.]
- 3. Finally I want to focus on the **weak value** of the **momentum operator**.

Also known as the (i) **local momentum**, (ii) Bohm momentum, (iii) guidance condition. [Berry, Five Momenta, Eur. J. Phys. **34**, (2013) 1337–1348.] I show how the weak values fit comfortably into a **non-commutative phase space**.

> [Hiley, J. Phys. Conf. Series, **361** (2012) 012014.] [Hiley, J. of Comp. Electronics, **14** (2015) 869-878.]

The aim of our experimental group is to explore this structure in phase space.

What do we mean by STRUCTURE PROCESS?

Rather than taking BEING as primary, we take BECOMING as primary

BEING is a special case of becoming. $\bigcap_{a_{ii}}$ It is an IDEMPOTENT $a_{ii}a_{ii} = a_{ii}$

Eddington: What is a 'particle'?

"The structural concept of existence is represented by an idempotent symbol"

[Eddington, The Philosophy of Physical Science, p. 162.]

The structure process forms a groupoid. Order of succession defined by the product:-

j is the target; j' is the source.

[Landsman, Mathematical Topics between Classical and Quantum Mechanics,1998.]

Order the elements of the groupoid to form an matrix algebra.

Heisenberg matrix mechanics is a primitive precursor.

All of this can be made rigorous in terms of a monoidal category

$$F_m^{ik} = P_m^l N_l^{jk} M_j^i \qquad \Rightarrow \qquad M: A \to B \qquad N: B \otimes C \to D \qquad P: D \to E$$
[Abramsky and Coecke, quant-ph/0402130]
$$\frac{C}{A} \qquad F \qquad E \qquad = \frac{C}{A \qquad M \qquad B} \qquad N \qquad P \qquad E$$

Heisenberg-Born-Jordan Quantum Mechanics.

By writing $q \to q(nm) \to a(nm) \exp[2\pi\nu(nm)t]$

[Heisenberg, Z. Phys. **33** (1925), 879–893.] [Born, Jordan, Z. Phys, **34** (1925) 858-888.]

Heisenberg explains the Ritz-Rydberg combination principle by writing: q(n)

$$q(nm) = q(nk)q(km)$$

viz:-
$$\exp[2\pi i\nu(nm)] = \exp[2\pi i\nu(nk)t] \times \exp[2\pi i\nu(km)t] \Rightarrow \nu(nm) = \nu(nk) + \nu(km)$$

In terms of Bohr's energy levels:-

$$h\nu(nm) = (E_n - E_m) = (E_n - E_k) + (E_k - E_m) = h[\nu(nk) + \nu(km)]$$

We can go further and write:- $E(mn) = E_m \delta_{mn}$ so that

$$Eq = \sum_{k} E(mk)q(kn) = \sum_{k} E_m \delta_{mk}q(kn) = E_m q(mn)$$

$$qE = \sum_{k} q(mk)E(kn) = \sum_{k} q(mk)E_k \delta_{kn} = E_n q(mn)$$

$$\dot{q} = \frac{i}{\hbar}(Eq - qE)$$

$$Essentially Heisenberg eqn of motion.$$

$$NB. No Schrödinger equation$$

Notice we have written

$$q \to q(mn) \exp[2\pi i\nu(mn)t]$$

Phase angle

We need something more general.

Polar decomposition of a matrix

For any $A \in GL(n, \mathbb{C})$ there exist a unique unitary matrix U and positive definite matrices P_1, P_2 such that

 $A = UP_1 = P_2U$, where $P_1 = U^{\dagger}P_2U$ and $U = \exp[iS]$ with $S^{\dagger} = S$

This enables us to handle the Pauli and Dirac spinors.

Wave Function information is encoded in a matrix.

Pauli

$$\psi_{L} = g_{0} + g_{1}\sigma_{23} + g_{2}\sigma_{13} + g_{3}\sigma_{12} \\ = \begin{pmatrix} g_{0} + ig_{3} & ig_{1} - g_{2} \\ ig_{1} + g_{2} & g_{0} - ig_{3} \end{pmatrix} \begin{cases} g_{0} = (\psi_{1}^{*} + \psi_{1})/2 & g_{3} = i(\psi_{1}^{*} - \psi_{1})/2 \\ g_{2} = (\psi_{2}^{*} + \psi_{2})/2 & g_{1} = i(\psi_{2}^{*} - \psi_{2})/2 \\ g_{0}, g_{1}, g_{2}, g_{3} \in \mathbb{R} \end{cases}$$

Dirac

Schrödinger

$$\psi_L = g_0 + eg_1 = \begin{pmatrix} g_0 & g_1 \\ -g_1 & g_0 \end{pmatrix} \qquad \qquad g_0 = (\psi^* + \psi)/2 \qquad g_1 = i(\psi^* - \psi)/2 \qquad g_0, g_1 \in \mathbb{R}$$

Instead of

Clifford Hierarchy

[Hiley, Process, Distinction, Groupoids and Clifford Algebras, Lecture Notes in Physics, vol. 813, 705, Springer (2011)]

Dirac's bra-ket notation already contains the notion of process.

 i_{ii} $|i\rangle\langle j|$ Outer product a_{ii} $|i\rangle\langle i| = \epsilon_i$ Idempotent since $|i\rangle\langle i| = |i\rangle\langle i|$ Inner product $\langle i|j\rangle$ This is the transition probability amplitude of finding process *i*, given process *j*The wave function is a transition probability amplitude!post-selection

Given the process labeled by $|\psi\rangle$, the probability amplitude of finding the energy at x is $\langle x|\psi\rangle$

We need to find a better, algebraic way of describing the individual process.

How do the statistics come in?

Arises naturally from Wederburn's theorem for a simple algebra

[Kauffman, Knots and Physics, p. 377 (2001)]

 $\epsilon = |\psi\rangle\langle\psi|$ If we write

$$\psi\rangle\langle\psi|A|\psi\rangle\langle\psi|=\langle A\rangle|\psi\rangle\langle\psi|$$

We can also write $\langle A \rangle = Tr(\rho A)$

where $\rho = |\psi\rangle\langle\psi| = \Psi_L \Psi_R = \psi_L \epsilon \psi_R$

Full algebraic description of quantum phenomena

How do weak values fit into all this algebra?

$$\begin{split} \langle \psi | A | \psi \rangle &= tr(A\rho) \quad \text{with} \quad \rho = |\psi\rangle \langle \psi | & \hat{A} | a_n \rangle = a_n | a_n \rangle \quad a_{\min} \leq a_n \leq a_{\max}. \\ tr(A\rho) &= \sum_{\phi_j} \rho(\phi_j) \frac{\langle \phi_j | A | a_n \rangle}{\langle \phi_j | \psi \rangle} = \sum_{\phi_j} \rho(\phi_j) \langle A_{(\phi_j;\psi)} \rangle_w \qquad \rho(\phi_j) = |\langle \phi_j | \psi \rangle|^2 \\ \\ \text{Weak Value} \quad \langle A_{(\phi_j;\psi)} \rangle_w &= \frac{\langle \phi_j | \hat{A} | \psi \rangle}{\langle \phi_j | \psi \rangle} \quad \text{Transition probability amplitude} \\ \hline \left[|\phi_j \rangle = \sum_{j,n} d_{jn} | a_n \rangle \right] \text{and} \quad |\psi\rangle = \sum_k c_k | a_k \rangle. \\ \langle A_{(\phi_j;\psi)} \rangle_w &= \frac{\langle \phi_j | \hat{A} | \psi \rangle}{\langle \phi_j | \psi \rangle} = \frac{\sum_{n,k} d_{jn}^* c_k \langle a_n | \hat{A} | a_k \rangle}{\sum_{n,k} d_{jn}^* c_k \langle a_n | a_k \rangle} = \frac{\sum_n d_{jn}^* c_n a_n}{\sum_n d_{jn}^* c_n}. \\ \\ \text{system we see that with these coefficients:-} \end{split}$$

 $a_1 = -1, \ a_2 = 1$ $d_{j1} = -99$ $d_{j2} = 101$ $c_1 = c_2 = 1$ $\langle A_{(\phi_j;\psi)} \rangle_w = \frac{\langle \phi_j | \hat{A} | \psi \rangle}{\langle \phi_j | \psi \rangle} = 100$

A weak value is a weighted transition probability amplitude, $A(\phi_j \psi)$

The standard approach arises by choosing

Two state

$$\begin{pmatrix} |\phi_j\rangle = |a_j\rangle \end{pmatrix} \text{ and } |\psi\rangle = \sum_k c_k |a_k\rangle$$

$$\langle A_{(\phi_j;\psi)}\rangle_w = \frac{\sum_k c_k \langle a_j | \hat{A} | a_k\rangle}{\sum_k c_k \langle a_j | a_k\rangle} = \frac{c_j a_j}{c_j} = a_j.$$

$$\langle \psi | A | \psi\rangle = \sum_j |c_j|^2 a_j$$

Weak values of spin.

Experiment using neutrons.

[Sponar, Denkmayr,,Geppert, Lemmel, Matzkin, and Hasegawa, arXiv:1404.2125 (2014).]

Rob Flack and Vincenzo Monachello are experimentally investigating weak values of spin using helium.

Weak value of the momentum operator, or the LOCAL MOMENTUM. Notion of a local momentum has a long history

The weak value of the kinetic energy:-

$$(2m\psi)^{-1}\hat{\boldsymbol{p}}\cdot\hat{\boldsymbol{p}}\cdot\boldsymbol{p}\psi = (2m\psi)^{-1}\hat{\boldsymbol{p}}\cdot(\boldsymbol{v}+i\boldsymbol{v}_i)\psi = mv^2/2 + Q + i(m\boldsymbol{v}\cdot\boldsymbol{v}_i - \hbar\nabla\cdot\boldsymbol{v})$$
$$2Q = -mv_i^2 + \hbar\nabla\cdot\boldsymbol{v}_i = -\frac{\hbar^2}{m}\frac{\nabla^2 R}{R}$$

This gives us a very different view of the quantum potential energy

[Grössing, Physica A: Statistical Mechanics and its Applications 388.6 (2009): 811-823.]

Stationary states

Consider the ground state of particle in box.

$$\psi_n(x,t) = \sqrt{\frac{2}{a}} \sin\left(\frac{n\pi x}{a}\right) e^{\frac{iE_n t}{\hbar}} \qquad R_n = \sqrt{\frac{2}{a}} \sin\left(\frac{n\pi x}{a}\right). \qquad S_n(x,t) = \frac{E_n t}{\hbar}$$

$$\partial_x S_n = 0$$
 and $\partial_t S_n = -E_n$ $Q_n = -\frac{\hbar^2}{2m} \nabla^2 R_n / R_n = -\frac{n^2 \hbar^2 \pi^2}{2ma}$

This means $\boldsymbol{v} = 0$ but $\boldsymbol{v}_i \neq 0$

[Bohm and Hiley, Phys. Rev. Letters 55, (1985) 2511-1514.]

Why don't we see the effects of v_i in standard QM?

$$\langle \psi | \hat{P} | \psi \rangle = \hbar \int \left[\rho \nabla S + \frac{1}{2} \nabla \rho \right] d^3 x = \hbar \int \left[\rho \nabla S + \frac{\rho}{2} \frac{\nabla \rho}{\rho} \right] d^3 x = \frac{\hbar}{m} \int \left[\rho \boldsymbol{v} + \frac{\rho}{2} \boldsymbol{v}_i \right] d^3 x.$$

Since $\rho \to 0$ as $x \to \pm \infty$ then $\int \nabla \rho \, d^3 x = 0$

Therefore only the local velocity contributes to the mean momentum.

However as we have seen the **weak value of the kinetic energy is**

$$\langle P_{x,\psi}^2(x,t)\rangle_w/2m = mv^2/2 + Q$$

 $\langle P_{x,\psi}\rangle_w = T^{0j}/\rho = mv^j$

$$\langle \psi | \hat{P}^2 | \psi \rangle = \int \rho[(mv)^2 + 2mQ] d^3x.$$

How does classical mechanics emerge?

Separate the real and imaginary parts of the Schrödinger equation under polar decomposition

 $\psi(x,t) = R(x,t) \exp[iS(x,t)]$

Imaginary part

$$\frac{\partial P_x}{\partial t} + \nabla_x \cdot \left(P_x \frac{\nabla_x S_x}{m} \right) = 0 \quad \text{with} \quad P_x = |\psi(x)|^2 \quad \text{Conservation of probability}$$

Real part

$$\frac{\partial S_x}{\partial t} + \frac{1}{2\pi} \left(\frac{\partial S_x}{\partial x} \right) - \frac{1}{2mR_x} \left(\frac{\partial^2 R_x}{\partial x^2} \right) + V(x) = 0$$
Quantum potential $Q(x,t)$

Quantum Hamilton-Jacobi equation

Classical mechanics emerges when Q becomes negligible.

[Hiley and Mufti, in Fundamental Problems in Quantum Physics, ed. Ferrero and van der Merwe, pp.141-156, Kluwer, Dordrecht. (1995

Suggests it is *not inconsistent* to regard this as a 'trajectory' but beware!

Novel flow of energy. $\frac{1}{2m} (\nabla S)^2 \leftrightarrow \frac{1}{2m} \left[(\nabla S)^2 - \hbar^2 \frac{\nabla^2 R}{R} \right]$

Local Momentum.

Why was all this work been ignored for so long?

Fritz London in Rev. Mod. Phys., **17**, (1945) 310.

"The local mean velocity has no true quantum mechanical significance since it cannot be expressed as the expectation value of *any* linear operator."

What has changed? Steinberg's group has shown we can measure local momenta using

Peter Barker, Pete Edmunds and Joel Morley are attempting the same thing using argon