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1.  To explain and develop the mathematics we need to describe STRUCTURE  PROCESS.

EMERGENT SPACE-TIME and CLASSICAL PHYSICS.

Take quantum physics as basic.

NO! It is about PROCESS, ACTIVITY, about BECOMING.

[Bohm. Space, Time, and Q.T. Understood in Terms of Discrete Structural Process, Proc. Int. Conf.’ Kyoto, 252-287, (1965).]

The Quantum Cloud.  A. Gormley.

Artist’s impression of structure process.

This sculpture can be seen on the 
South Bank of the river Thames in London 



1.  To explain and develop the mathematics we need to describe STRUCTURE  PROCESS.

Is it about material objects moving in space and time?

EMERGENT SPACE-TIME and CLASSICAL PHYSICS.

Take quantum physics as basic.

NO! It is about PROCESS, ACTIVITY, about BECOMING.

[Bohm. Space, Time, and Q.T. Understood in Terms of Discrete Structural Process, Proc. Int. Conf.’ Kyoto, 252-287, (1965).]

Geometric algebras

We need an ALGEBRAIC description of quantum phenomena. 

Orthogonal and symplectic Clifford algebra.
 [Hiley,Process, Distinction, Groupoids and Clifford Algebras, Lecture Notes in Physics, vol. 813, 705, Springer (2011)]

2.  I will show how the standard quantum formalism and classical mechanics emerge from this structure.
[de Gosson and Hiley, Found Physics, 41 (2011), 1415-1436.]

[de Gosson and Hiley, Phys. Letts. A 377 (2013) 3005–3008.]

3.  Finally I want to focus on the weak value of the momentum operator.

Also known as the (i) local momentum, (ii) Bohm momentum, (iii) guidance condition.

I show how the weak values fit comfortably into a non-commutative phase space.

The aim of our experimental group is to explore this structure in phase space.

[Hiley, J. of Comp. Electronics, 14 (2015)  869-878.]
[Hiley, J. Phys. Conf. Series, 361 (2012) 012014.]

[Berry, Five Momenta,  Eur. J. Phys.  34, (2013) 1337–1348.]
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BEING is a special case of becoming.
aii

It is an IDEMPOTENT aiiaii = aii

What do we mean by STRUCTURE PROCESS?
Rather than taking BEING as primary, we take BECOMING as primary
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Order the elements of the groupoid to form an matrix algebra.

Heisenberg matrix mechanics is 
a primitive precursor.

“The structural concept of existence is represented by an idempotent symbol”
[Eddington, The Philosophy of Physical Science, p. 162.]

Eddington: What is a ‘particle’?

The structure process forms a groupoid.

i

g g0

k

j0

j j = j0g, g0 2 G and a(nm) =
1X

k=0

b(nk)c(km)

[Landsman, Mathematical Topics between Classical and Quantum Mechanics,1998.]j is the target; j’ is the source.

Order of succession defined by the product:-



such that

q ! q(mn) exp[2⇡i⌫(mn)t]

Notice we have written

Phase angle

For any A 2 GL(n,C) there exist a unique unitary matrix U and positive definite matrices P1, P2

A = UP1 = P2U, P1 = U†P2Uwhere U = exp[iS] S† = Sand with

Polar decomposition of a matrix

This enables us to handle the Pauli and Dirac spinors.

We need something more general.

E(mn) = Em�mn

Eq =
X

k

E(mk)q(kn) =
X

k

Em�mkq(kn) = Emq(mn)

qE =
X

k

q(mk)E(kn) =
X

k

q(mk)Ek�kn = Enq(mn)

q̇ =
i

~ (Eq � qE)

Eq � qE = (Em � En)q(mn)

Essentially Heisenberg eqn of motion.

We can go further and write:- so that

Thus

NB.  No Schrödinger equation

Non-commutative structure

Heisenberg-Born-Jordan Quantum Mechanics.

exp[2⇡i⌫(nm)] = exp[2⇡i⌫(nk)t]⇥ exp[2⇡i⌫(km)t] ) ⌫(nm) = ⌫(nk) + ⌫(km)

Heisenberg explains the Ritz-Rydberg combination principle by writing:

h⌫(nm) = (En � Em) = (En � Ek) + (Ek � Em) = h[⌫(nk) + ⌫(km)]

By writing

In terms of Bohr’s energy levels:-

[Born, Jordan, Z. Phys, 34 (1925)  858-888.]

[Heisenberg,  Z. Phys. 33 (1925), 879–893.]

q ! q(nm) ! a(nm) exp[2⇡⌫(nm)t

q(nm) = q(nk)q(km)

viz:-



 Schrödinger

 L = g0 + eg1 g0 = ( ⇤ +  )/2 g1 = i( ⇤ �  )/2 g0, g1 2 R
✓

g0 g1
�g1 g0

◆
=

Wave Function information is encoded in a matrix.

{
Pauli

 L = g0 + g1�23 + g2�13 + g3�12

g0 = ( ⇤
1 +  1)/2 g3 = i( ⇤

1 �  1)/2

g2 = ( ⇤
2 +  2)/2 g1 = i( ⇤

2 �  2)/2

g0, g1, g2, g3 2 R

✓
g0 + ig3 ig1 � g2
ig1 + g2 g0 � ig3

◆
=

Dirac

 L = a + b�12 + c�23 + d�13 + f�01 + g�02 + h�03 + n�5

 1 = a� ib;  2 = �d� ic;  3 = h� in;  4 = f + ig
a, b, c, d, f, g, h, n 2 R

4 x 4 matrix

Instead of

, ,  =
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 [Hiley,Process, Distinction, Groupoids and Clifford Algebras, Lecture Notes in Physics, vol. 813, 705, Springer (2011)]

Clifford Hierarchy
C (2,4)

C (1,3)

 C (3,0)



Inner product hi|ji This is the transition probability amplitude of finding process i, given process j
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|iihj| Outer product

|iihi| |iihi| = |iihi|Idempotent since|iihi| = ✏i

Dirac’s bra-ket notation already contains the notion of process.

post-selection pre-selection

| i

The wave function is  a transition probability amplitude!
Given the process labeled by      , the probability amplitude of finding the energy at x is          hx| i

⇢(i, j) = hi| ih |ji =  L(i) R(j) =  L(i)✏ R(j)  L is a element of a minimal left ideal
 R is a dual right ideal

We need to find a better, algebraic way of describing the individual process.

→| ih | g1 g2g2g1   

A B

∈ left ideal ∈  right ideal
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ΨL = Aε
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ΨR = εB€ 

ε
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Now we can include spin

For the Pauli

For the Dirac

For the Schrödinger

✏D = (1 + �0)/2

✏P = (1 + �3)/2

✏ = ih

Orthogonal Clifford algebra

Symplectic Clifford algebra

[Hiley and Callaghan, Foundations of Physics, 42 (2012) 192-208.] 

[Hiley, Found. Phys. 40, (2010) 356-367.]
[Dirac, The Principles of Quantum Mechanics, 1947]

Picks a spatial axis

Picks the time axis

✏S = 1



✏A✏ = hAi✏

Expectation value

✏2 = ✏

Arises naturally from Wederburn’s theorem for a simple algebra

How do the statistics come in?
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We can also write hAi = Tr(⇢A) where ⇢ = | ih | =  L R =  L✏ R

Full algebraic description of quantum phenomena

Operator Complex numberTrace

i j i i⇒⇒ i i

=

ε

ε

A

ε

[Kauffman, Knots and Physics, p. 377 (2001)]

| ih |A| ih | = hAi| ih |

✏ = | ih |If we write 
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X

j,n
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X

k
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Weak Value hA(�j ; )iw =
h�j |Â| i
h�j | i

Â|ani = an|ani a
min

 an  a
max

.h |A| i = tr(A⇢) ⇢ = | ih |with

tr(A⇢) =
X

�j

⇢(�j)
h�j |A|ani
h�j | i

=
X

�j

⇢(�j)hA(�j ; )iw ⇢(�j) = |h�j | i|2

Transition probability amplitude

How do weak values fit into all this algebra?

The standard approach arises by choosing

|�ji = |aji and | i =
X

k

ck|aki

hA(�j ; )iw =

P
k ckhaj |Â|akiP
k ckhaj |aki

=
cjaj
cj

= aj .

⇢(aj) = |cj |2

h |A| i =
X

j

|cj |2aj

hA(�j ; )iw =
h�j |Â| i
h�j | i

= 100

Two state system we see that with these coefficients:-

A weak value is a weighted transition probability amplitude, A(�j  )

dj1 = �99 dj2 = 101 c1 = c2 = 1a1 = �1, a2 = 1



h�̂z(�; )iw =
h�|�̂z| i
h�| i

h�| = h"z |+ h#z | and �̂z| i = d+| "zi+ d�| #zii.
p
2d+ = cos↵/2 + sin↵/2 and

p
2d� = cos↵/2� sin↵/2,

h�̂z(�; )iw = tan↵/2.
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6, we can effectively replace q by 6 in the above. In sum-
mary, the validity of AAV's calculation requires

weak
S.G, z

strong
S.G. x

5 «1/A (20)

and

6 (( min
{n=2,3, .

1/(n —i)

(ef ~
w "~q,„&

(21) FIG. 1. Stern-Gerlach magnet layout for the AAV experi-
ment.

[Note that the condition quoted by AAV in their Eq. (4)
is incorrect in several respects. ]
The calculation in Eqs. (13)—(16) above does therefore

have a certain region of validity and we must now con-
front the apparent paradox arising from the two expres-
sions for ~C&f }:Eqs. (11) and (17). How can ~4f } be a
single Gaussian peaked at A [Eq. (17)],while simultane-
ously being a superposition of Gaussians, each peaked at
a value a„[Eq. (11)],when A may well be much greater
than any of the a„'s? How can a large shift be produced
from a superposition of small shifts?
The resolution of the paradox lies in the fact that the

superposition of Gaussians in Eq. (11) involves camp/ex
coefficients. Thus, in contrast with classical probability
theory, or with the situation in Eq. (7), where the weights
are all positive definite, one may have complicated can-
cellations between the individual Gaussians. Such can-
cellations are capable of producing a function whose peak
is shifted far to one side, though not by more than of or-
der the width bp =1/(2h) —a fact that is reflected in the
restriction A (&1/6 above. The phenomenon is not
unique to Gaussians, and mould occur for any qualita-
tively similar distributions. Some explicit, numerical ex-
amples will be given at the end of Sec. III and in Figs.
2—4 below.

vice, " ~4), corresponds to their spatial wave function:
The operator A is here A,o „' the coordinate q is z, and
hence p is p, .
We shall consider a "weak measurement" of A,a„ in

which the beam splitting 6p, induced by the Stern-
Gerlach magnet is small compared to bp, =1/(2b ), the
overall p, spread of the beam. Thus, the o, =+1 and—1 components of the beam continue to overlap strongly
and are not cleanly separated as they would be in a
(strong) measurement. A post selection of the spin state
is made by passing the beam through a second magnet
with a strong Stern-Gerlach field aligned in the x direc-
tion. This splits the beam into two well-separated beams
and the o. =+1 beam is selected and imaged on a dis-
tant screen. (See Fig. 1.)
Thus, the initial spin state is the +1 eigenstate of

( coscr )cr +( slnct }a

a . acos +sln—
2 2
a . acos— sln—
2 2

III. EXAMPLE INVOLVING SPIN-2 PARTICLES and the final state is the + 1 eigenstate of &„:
AAV illustrate their general discussion with the fol-

lowing experiment. A beam of spin- —, particles moves in
the y direction with well-defined velocity. The beam is
prepared such that the particles' spins point in the xz
plane at an angle a to the x axis. It is assumed that the
spatial wave function of the particles has a Gaussian
shape of width 6 in the z direction. Consequently, the
beam is diverging with a momentum spread
bp, =1/(2b, ).
A measurement of the z component of the spin is per-

formed in the usual way, by passing the beam through a
Stern-Gerlach magnet. This produces a coupling be-
tween the spin operator &, and the z coordinate through
the coupling Hamiltonian

(24}

[Note that (u, u) is shorthand for u
~

1' }+u
~ L }, where

~ 1 ), ~
J, }are the eigenstates of &,.]

Hence,

(ef (e,„)=cos—,(ef (e, (e,„)=sin—, (2S)

aA =(A,o ) =A, tan—.W Z W 2 (26)

so that the "weak" value of the spin component u„ in
AAV's sense, is

H= A,g(t)z&, , — (22) The initial spatial wave function is

where k is proportional to the particle's magnetic mo-
ment, to 58, /Sz, etc. , so that the localized function g (t)
(which arises from the passage of the beam particles
through the localized region of inhomogeneous magnetic
field) is normalized to unity. Using the earlier terminolo-
gy, the "quantum system's" state

~
4 ) corresponds to the

particles' spin state, while the state of the measuring de-

z'
P;„(q)=—(q~4,„)=exp — f(x,y) . (27)

The precise x,y dependence is unimportant and we shall
ignore it henceforward.
Substituting in Eq. (17), we obtain AAV s prediction

for the final (p-representation) wave function:

[Duck, Stevenson and Sudarshan, Phys. Rev. 40 (1989) 2112-17.]

Weak values of spin.

Rob Flack and Vincenzo Monachello are experimentally investigating weak values of spin using helium. 
[Sponar, Denkmayr,,Geppert, Lemmel, Matzkin, and Hasegawa, arXiv:1404.2125 (2014).]

Experiment using neutrons.



[Bliokh, Bekshaev, Kofman and Nori, New J. Phys. 15 (2013) 073022 ]

This gives us a very different view of the quantum potential energy

(2m )�1p̂.p̂ = (2m )�1p̂.(v + ivi) = mv2/2 +Q+ i(mv.vi � ~r.v)

2Q = �mv2i + ~r.vi = �~2
m

r2R

R

The weak value of the kinetic energy:-

 [Grössing, Physica A: Statistical Mechanics and its Applications 388.6 (2009): 811-823.]

⇢ = R2
 = R exp[iS/~]

Weak value of the momentum operator, or the LOCAL MOMENTUM.

hP(x, )iw =
P̂ (x, t)

 (x, t)
= p(x, t) = m(v + iv

i

)

v =
rS

m
vi = �~rln⇢

2m
= � ~

m

rR

R

Notion of a local momentum has a long history

[Hirschfelder, Christoph and Palke, J. Chem Phys.  61 (1974) 5435-55].

[Berry, Five Momenta,  Eur. J. Phys.  34, (2013) 1337–1348.]

[London, Rev. Mod. Phys. 17 (1945) 310-20]

Osmotic velocity
[Nelson, Dynamical Theories of Brownian Motion, (1967),]



Consider the ground state of particle in box.

 n(x, t) =

r
2

a
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⇣
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This means v = 0 vi 6= 0but

Stationary states

 [Bohm and Hiley,  Phys. Rev. Letters 55, (1985) 2511-1514.]

Why don’t we see the effects of vi in standard QM?

h |P̂ | i = ~
Z 

⇢rS +
1

2
r⇢

�
d

3
x = ~

Z 
⇢rS +

⇢

2

r⇢
⇢

�
d

3
x =

~
m

Z h
⇢v +

⇢

2
vi

i
d

3
x.

⇢ ! 0 x ! ±1
Z

r⇢ d

3
x = 0Since as then

Therefore only the local velocity contributes to the mean momentum. 

hP 2
x, 

(x, t)i
w

/2m = mv

2
/2 +Q

hP
x, 

i
w

= T 0j/⇢ = mvj

h |P̂ 2| i =
Z
⇢[(mv)2 + 2mQ]d3x.

However as we have seen the weak value of the kinetic energy is



Imaginary part
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Real part

Quantum Hamilton-Jacobi equation 

Quantum potential Q(x,t)

Classical mechanics emerges when Q becomes negligible. 

Example

1

2m
(rS)2 $ 1

2m


(rS)2 � ~2r

2R

R

�
Novel flow of energy.

Suggests it is not inconsistent to regard this as a ‘trajectory’ but beware!
[Hiley and Mufti,  in  Fundamental Problems in Quantum Physics, ed. Ferrero and van der Merwe, pp.141-156, Kluwer, Dordrecht. (1995)]

How does classical mechanics emerge?

 (x, t) = R(x, t) exp[iS(x, t)]

Separate the real and imaginary parts of the Schrödinger equation under polar decomposition



What has changed? Steinberg’s group has shown we can measure local momenta using 

Peter Barker, Pete Edmunds  and Joel Morley are attempting the same thing using argon 

“The local mean velocity has no true quantum mechanical significance since it 
cannot be expressed as the expectation value of any linear operator.”

Fritz London in  Rev. Mod. Phys., 17, (1945) 310.

Why was all this work been ignored for so long?

Local Momentum.
As I have already remarked, the notion of LOCAL MOMENTUM has been around a long time.

It was discussed by Hirschfelder, Christoph and Palke, J. Chem Phys.  61 (1974) 5435-55.

Belinfante, A Survey of Hidden-Variables Theories, 1973, who called it the “Bohm momentum.”

Philippidis, Dewdney and Hiley, Nuovo Cimento 52B, 15-28 (1979).

 Bohm and Hiley,  The Undivided Universe, 1993.
Holland, The quantum theory of motion, 1995.

Hirschfelder, Christoph, and Palke: Quantum mechanical streamlines. I 5445 
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there is a quantized vortex. The vortex around the first 
node is indicated by a "V". We shall give a detailed de-
scription of this vortex presently. The theory for such 
quantized vortices is developed in the companion paper. 1 

The dashed lines labeled eo and - eo correspond to the 
stationary phase approximation for the incident and re-
flected wavefunctions. The separation between the 
dashed lines at the front face of the barrier (x = 0) is the 
Goos-Hanchen separation, YR(SPA). The dashed lines 
eo ± f: and - eo ± f: correspond to the integration limits of 
the incident and reflected wavepackets. Notice that for 
L = "", where the incident wave is totally reflected, the 
streamlines which correspond to the principal wave in 
the incident packet are bent around so that they never 
enter the barrier region. According to Fig. 4(b), at 
x = 1 the principal wave extends from Y = 0 to Y = 3. (It 
is a coincidence that the point x = 1, Y = 3 almost touches 
the dashed line eo + f:.) Another feature to observe is the 
asymmetry of the streamline patterns in the positive x 
region for L=0.2 and O.I. 

Figure 7 shows the wiggles in the reflected and trans-
mitted streamlines for L = 0.1 more clearly than in Fig. 
6(c) since the coordinate y is extended over a larger 
range. Since the distance between sllccessive ghosts in 
the incident wave packet is 2lo, the same as the distance 
between successive wiggles, it seems very likely that 
the wiggles are due to interference between the principal 
wave, the ghosts, and their reflected or transmitted 

(b) 

0 

X-

FIG. 6. Real streamlines for 
L = 00, 0.2, 0.1, and O. O. Here 
L = 00 corresponds to total re-
flection and L = 0 corresponds 
to the incident wave with no re-
flection. Note that the stream-
lines remain smooth and con-
tinuous in passing through the 
barrier (dotted area). The 
first vortex is indicated by a 
"V". The dashed lines labeled 
00 and - flo correspond to the 
stationary phase approximation 
for the incident and reflected 
wavefunctions. The dashed 
lines flo+€, fl o-€, -Oo+€ and 

o 1.0 
x-

(d) 

- flo - € correspond to the an-
gular width of the integrations 
to obtain the incident and re-
flected wave packets. The sep-
aration between the two points 
where the dashed lines come 
together is the Goos-Hlinchen 
shift. 

waves. In making the calculations for Fig. 7, we varied 
the number of integration points for the wave packets 
and varied the interval size for the streamlines so as to 
make sure that the wiggles were not the of com-
putational errors. Since for our choice of eo and f: the 
angle 80 - f: is greater than e c, we can rule out the pos-
sibility that some of the wavelets in the incident wave 
packet might have a wave vector lying in the angular 
range less than ec • If such wavelets existed, they could 
be multiply reflected and/or transmitted at the barrier 
interfaces so that the wiggles might be caused by inter-
ference with these internally reflected wavelets. Wave 

FIG. 7. Shows the wiggles in 
the reflected and transmitted 
real streamlines for L = o. 1. 
These wiggles are probably due 
to interference between the in-
cident and reflected principal 
waves and ghosts. The inter-
val between sucessive ghosts 
is the same as the wavelength 
of the wiggles. 
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Dewdney and Hiley  Found. Phys. 12, 27-48 (1982).




