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From: Feynman Lectures of Physics,
Vol lll, Chapter 1.

“We choose to examine a phenomenon which is impossible,
absolutely impossible, to explain in any classical way, and which has
in it the heart of guantum mechanics. In reality, it contains the only
mystery....”
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Motivated by outreach for highschool educational movie.
Damian Pope from Perimeter Institute.
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"We should say right away that you should not try to set up this experiment. This
experiment has never been done in just this way. The trouble is that the apparatus would

have to be made on an impossibly small scale to show the effects we are interested in."!

WoPHY 2015
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Let’s stop the experiment after the first electron has
landed

This is where it happened to
land in our experiment
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Is momentum conserved?
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Momentum conservation...Is
this what happens?
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Einstein: measure the recoil of the first
collimating slit and then we know
which slit the particle went through
and still have the interference pattern.
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Einstein: measure the recoil of the first
collimating slit and then we know
which slit the particle went through
and still have the interference pattern.

Vienna2015EmQM

Einstein-Bohr
dialogue



y
L

e
S
3

o

=L

Einstein: measure the recoil of the first
collimating slit and then we know
which slit the particle went through
and still have the interference pattern.
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Einstein: measure the recoil of the first
collimating slit and then we know
which slit the particle went through
and still have the interference pattern.

Bohr: AXAp >h

Know the position of slit only up to Ax.

Not good enough to determine which
slit...
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Einstein: measure the recoil of the first Finstein-Bohr
collimating slit and then we know dialogue
which slit the particle went through

and still have the interference pattern.

Bohr: AxAp > h

Know the position of slit only up to
Ax = hbar/Ap. Not good enough to
determine which slit...

But both assume momentum exchange between electron and slit, as do
Wooters and Zurek in their analysis decades later
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What interaction caused the momentum
exchange between the electron and the grating?
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Answers:
1. “Electrons reflect from the bar edges”™
2. “Phonons are excited in the grating”

3. “Vacuum field photons scatter the electrons and the grating
imposes boundary conditions on that field”

4. “The electron’s field acts on the grating which back-acts on
the electron”

5. “This 1s not a question one should ask™

6. “I calculated this, but never published 1t”

1. “What about neutrons or photons?”



Answers:
1. “Electrons reflect from the bar edges”™
2. “Phonons are excited in the grating”

3. “Vacuum field photons scatter the electrons and the grating
imposes boundary conditions on that field”

4. “The electron’s field acts on the grating which back-acts on
the electron”

5. “This 1s not a question one should ask”™ —

6. “I calculated this, but never published 1t”

Feynman: no one has ever come up with a mechanism to
explain double slit diffraction

1. “What about neutrons or photons?”
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Example of diffraction

Think of..

Electrons diffracted by
a light grating

standing wave of light=grating!
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Experimental Setup




The Kapitza-Dirac Effect
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What interaction caused the momentum exchange
between the electron and the grating?
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What interaction caused the momentum exchange
between the electron and the grating?

2nk

$

Stimulated Compton scattering
For this case we can answer the question!
So let’s ask it for the double slit too.

Vienna2015EmQM H. Batelaan. Rev. of Mod. Phys. 79, 929 (2007)
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What interaction caused the momentum
exchange between the electron and the grating?
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Answers:

1. “Electrons reflect from the bar edges”™

2. “Phonons are excited in the grating”

3. “Vacuum field photons scatter the electrons and the grating
imposes boundary conditions on that field”

4. “The electron’s field acts on the grating which back-acts on
the electron”

5. “This 1s not a question one should ask™

6. “I calculated this, but never published 1t”

1. “What about neutrons or photons?”
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Is electron diffraction a vacuum-field effect?
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Stochastic Electrodynamics: Double Slit Electron Diffraction
from de la Pena and Cetto “The Emergent Quantum” (2014)
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Fig. 9.2 Trajectories followed by electrons in a realistic simulation of a two-slit experiment. The
particles are uniformly distributed in the beam behind the slits. The diffracted modes of the field
have momentum pg and the momentum of the particles is p, with p = pg. Figure courtesy of

J. Avendano, adapted from Avendafio and de la Pena (2010)
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First an “easier” toy system first : The Harmonic
Oscillator

)

spring Charged mass

Following Boyer’s work
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The Classical Harmonic Oscillator in the vacuum

ml &= —maw;T &
o) 2
= -mae x — ma [+ eE  (0,1)
zp ,X
MA]MX

socillator damping field

For Analytical Derivation See
T. H. Boyer Phys. Rev. D 11, 790 (1975)
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The Harmonic Oscillator....verificatinn
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Wayne Huang and Herman Batelaan, Found. of Phys. 2015
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Squeezed Vacuum State
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x3)-Squeezed State
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Amplitude-Squeezed State
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Phase-Squeezed State
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“ Schrodinger Cat State? ”
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Quantum-Classical Correspondence in Heisenberg Picture

Classical Mechanics

m% x(t)=—mw; x+ gE,(x.t)
where E (X, t) = —a%Ap(X,l‘)

Quantum Mechanics




Classical Mechanics with Zero-Point Field (CM-ZPF)

mi =—mo;x—mlo;x+qE,, (1)

(vacuum field)

_ wave-vector space
Features of the vacuum field:

4X 10’

1. Lorentz invariant radiation spectrum
2. Isotropic

*ZPF = vacuum field




Heisenberg Minimum Uncertainty
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Agreement in Analytical Solutions

For y"-interaction:

gt 252

For x(z)-interaction:
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Comparison between QM and CM-ZPF
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Do not have answer (yet).
In communication with
Jaime Avendano...

Fig. 9.2 Trajectories followed by electrons in a realistic simulation of a two-slit experiment. The
particles are uniformly distributed in the beam behind the slits. The diffracted modes of the field
have momentum pg and the momentum of the particles is p, with p = pg. Figure courtesy of
J. Avendano, adapted from Avendafio and de la Pena (2010)
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Maybe a related
experiment...
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For decoherence experiment:

1. Compare gold to Si surface
2. Try different electron energies (500 to 1500 eV)
3. Purpose to study vacuum field noise

explanation of decoherence (Levinson J.Phys.A
37 3003 2004)

For image charge experiment:

1. Image charge is simplest vacuum QED effect (Larry Spruch,
Peter Milonni

2. Purpose see relativistic corrections (retardation).



Back to the doube slit. Answers:
1. “Electrons reflect from the bar edges”™
2. “Phonons are excited in the grating”

3. “Vacuum field photons scatter the electrons and the grating
imposes boundary conditions on that field”

4. “The electron’s field acts on the grating which back-acts on
the electron”

5. “This 1s not a question one should ask™

6. “I calculated this, but never published 1t”

1. “What about neutrons or photons?”
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1. “Electrons reflect from the bar edges”

3. “Vacuum field photons scatter the electrons and the grating
imposes boundary conditions on that field”

4. “The electron’s field acts on the grating which back-acts on
the electron”

5. “This 1s not a question one should ask™

6. “I calculated this, but never published 1t”

1. “What about neutrons or photons?”
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Back to the doube slit. Answers:

1. “Electrons reflect from the bar edges”

3. “Vacu rating
1mposes

4. “The electron’s field acts on the grating which back-acts on
the electron”

5. “This 1s not a question one should ask™

6. “I calculated this, but never published 1t”

1. “What about neutrons or photons?”
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It diffracts!
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