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Getting Rid of Ψ Altogether: 

 Is Ψ Alive or Dead ? 

How can that even be possible? 

Not                  ,                But 

Ψ  



But if not Ψ, then what? 

•  The wavefunction Ψ (x) is replaced with an ensemble of 
trajectories, x(C,t). 
–  parameter C labels individual trajectories within the ensemble. 
–  resembles classical statistical mechanics/trajectory simulations. 

•  The nonrelativistic individual trajectories turn out to be 
the quantum trajectories of David Bohm. However… 

•  This is NOT Bohmian Mechanics! 
–  Bohm uses a single trajectory, x(t). 
–  Bohm also uses the wavefunction, Ψ (x). 

Answer: Trajectories only 



Copenhagen quantum 
mechanics 

Bohmian mechanics Quantum trajectory-based 
formulation (non-relativistic) 

Ψ represents the state of 
the system. TDSE 
drives evolution of       
Ψ(x,t). 

Ψ and x(t) together 
represent the state of 
the system. Ψ leads to 
quantum potential Q, 
driving trajectory 
dynamics via: 

There is no Ψ.  x(t, C) (trajectory 
ensemble) alone represents the 
state of the system, and leads to Q.   
x(t, C)  satisfies its own PDE that 
replaces the TDSE (with ' denoting 
partial derivative w/ respect to C.) 
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m˙ ̇ x + ∂V (x)
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+
∂Q(x, t)
∂x

= 0



Broad-Ranging Ramifications of 
the Trajectory-Based Approach 

•  Theoretical/Mathematical  
–  new formulation (derivation?) of quantum mechanics. 
–  new conservation laws and conserved quantities. 
–  new dynamical laws and kinematic forms, e.g. for Q.  

•  Computational/Numerical 
–  direct PDE solution of x(C,t) replaces Schroedinger Equation. 
–  approximate ODE solution replaces classical simulations. 

•  Measurement/Interpretational 
–  double slit exp’t, EPR paradox, def’n of measurement, etc. 
–  possible many-worlds-like interpretation. 
–  no wavefunction means no wavefunction collapse, per se.  



Relativistic Generalization 
•  Our approach is “natural,” because it  involves action-

extremizing trajectories. 
•  Usual approach with Ψ-based Lagrangian leads to 

Klein-Gordon wave equation, which fails to give a 
meaningful single-particle interpretation. 
–  The free-particle Klein-Gordon equation is: 

–  Non-physical negative-energy solutions. 
–  The temporal part of the four-current density is: 

–      is not positive-definite in general. 
–  The four-current density    is not time-like in general. 

•  All of above issues seem to be avoided in our 
relativistic trajectory-based approach.  



Relativistic Trajectory Theory 
Motivated by Two Questions: 

1. What is the Schroedinger equation the non-
relativistic limit of ?   

 Dynamics 

2. Why does relativity theory provide no notion of 
global simultaneity for accelerating particles? 

 Kinematics 



Part I:  
Kinematics 



Einsteinian Relativity (1+1) 

•  Simultaneity well-
defined for a given 
inertial observer, but, 
depends on observer. 



Einsteinian Relativity (1+1) 

•  Simultaneity well-
defined for a given 
inertial observer, but, 
depends on observer. 
•  A single inertial 
particle (red curve) 
suffices to define an 
entire (ct', x' ) inertial 
frame (whose contours 
are the dashed and solid 
lines, respectively.) 



Einsteinian Relativity (1+1) 

•  Simultaneity well-
defined for a given 
inertial observer, but, 
depends on observer. 
•  Simultaneity not 
globally defined for 
accelerating particles, 
no matter how gentle 
the acceleration.  



Simultaneity for 
Accelerating Particles (1+1) 

•  Solid curve = 
worldline for an 
accelerating observer. 
•  Comoving frame 
approach: straight line 
extrapolation of local 
simultaneity. 

: simultaneity 
submanifolds cross! 
Global simultaneity is 
ill-defined.  



Simultaneity for 
Accelerating Particles (1+1) 

•  According to relativity 
theory, local 
simultaneity can be 
defined for accelerating 
particles, but global 
simultaneity can not. 



Simultaneity for Accelerating  
Quantum Particles (1+1) 

•  The system now 
consists of an ensemble 
of quantum trajectories. 
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Simultaneity for Accelerating  
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Quantum Accelerated and 
Quantum Inertial Motion (1+1) 

•  Even for a single relativistic free particle, quantum forces 
can give rise to quantum accelerated motion, i.e. curved 
quantum trajectories and simultaneity submanifolds. 

•  As a special case, a single relativistic free particle can also 
undergo quantum inertial motion, when Q=0 everywhere. 
–  Trajectories are parallel straight lines, corresponding to contours of 

Lorentz-transformed x'. 
–  "Simultaneity submanifolds" are also parallel straight lines, 

corresponding to ct' contours. 

•  This corresponds to the SR notion of an inertial frame. 



Spacetime of a Relativistic  
Quantum Particle 

•  The spacetime of a single relativistic spin-zero 
particle is represented by a 4D Reimannian 
manifold, which is presumed flat. 

•  A global inertial frame can be defined. The 
inertial coordinates are: 

•  Define the Minkowski metric tensor: 

•  The proper time is defined as: 



Ensemble Time and Natural Coords 
•  Simultaneity submanifolds are contours of a scalar function, 

called the ensemble time 
•  Define a system of natural coordinates: 

    where Ci are the trajectory labels. For now, we allow arbitrary 
reparametrizations: λ → λ′ = λ′(λ) and C → C′ = C′(C) 

•  The metric tensor of the natural coordinates and that of the 
inertial coordinates are related by: 

•  Note that the metric tensor is block-diagonal. 
•  Define: 



Ensemble Time and the  
Generalized Twin “Paradox” 

•  Note: the usual relativistic proper time, τ, can be defined 
along every trajectory in the ensemble, and is therefore a 
bona fide time coordinate on spacetime.  

•  Is it possible to take τ to be an ensemble time, λ ? 
–  In general, NO, this is not possible. 
–  The relation between τ and λ can be found from the metric tensor: 

–  Note: g00 is negative, in keeping with the -+++ metric signature. 
•  The difference between τ and λ gives rise to the generalized 

twin paradox.  € 

g00 = −
dτ
dλ
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Regular Twin “Paradox” 

•  Two “twin” observers 
cross paths at the blue 
circle event. 
• Left twin: inertial 
motion; right twin: 
accelerated motion 
• Right twin is younger 
when paths recross at 
the red circle event. 



•  Two “copies” of the 
same observer follow 
two, non-crossing paths.  
• Both agree that the two 
blue circle events occur 
simultaneously. 
• Both also agree that the 
two red circle events 
occur simultaneously. 
• One trajectory has 
experienced less 
elapsed proper time 
than the other. 



Ensemble Proper Time, & the 
Relativistic Quantum Potential 

•  Of all choices of ensemble time coordinates, λ , one choice is 
special.  We call it the ensemble proper time, denoted T. 

•  There is a close connection between T and Q, the 
(relativistic) quantum potential:	


•  Note: T reduces to τ, in the limit of quantum inertial motion. 
•  Note: Q itself plays a dynamical role, and not just its 

gradient, the quantum force! 
–  Reminiscent of the gravitational potential. 



Ensemble Proper Time, & the 
Relativistic Quantum Potential 

•  Gravitational potential vs. quantum potential         
(weak-field limit) 

•  Note: Q can be either positive OR negative! 
•  When Q > 0 (classically allowed), dτ < dT 

–  The passage of the proper time for a given trajectory is slower 
than that of an inertial trajectory (time dilation). 

•  When Q < 0 (classically forbidden), dτ > dT 
–  The passage of the proper time for a given trajectory is faster 

than that of an inertial trajectory (time compression). 



Part II:  
Dynamics 



Non-relativistic Derivation 
 (1+1) Time-dependent Wavepackets 

•  Equation (1) implies conservation of spatial probability: 

•  Converting density from x to C space yields constant f(C). 
•  Uniformizing spatial coordinates: 

-  A convenient choice of spatial coordinate C is one for which the 
spatial density becomes uniform.  

-  Specifically, for the special choice C=P, we require: f(P) = 1.  
-  Leads to: 

Spatial Probability Conservation: 

€ 

ρ(x(t), t)dx(t) = const = f (C)dC

€ 

ρ = 1/ x '( )



Relativistic Derivation 
 Lagrangian and Action 

•  The action consists of two parts: 

•  The Lagrangian is a homogeneous function of degree 1 
in      .  Thus the action is parameter invariant. 

•  We will set λ= T  later on.  We choose 
    to obtain the nonrelativistic limit. 

  

€ 

S = dλd3∫ Cf (C) L 0 − LQ( )



Relativistic Derivation 
 Lagrangian and Action 

•  In non-relativistic quantum mechanics, it has been shown [J. Schiff 
and B. Poirier, (2012)] that the quantum potential is 

•  The following relativistic quantum potential is proposed: 

•  This expression suggests that the quantum part of the action is: 



Relativistic Derivation 
 Dynamical PDE (eqs. of motion) 

•  By extremizing the action, we obtain the 
equation of motion for the trajectory ensemble. 

•  PDE is fourth order in C, second order in T, but 
treats all inertial coordinates xα on equal footing. 

•  Choosing uniformizing coordinates: 

T T T 

€ 

f (C = P) =1



Trajectories vs. Klein-Gordon 
Klein-Gordon equation Relativistic quantum trajectories  

Dependence on 
future time 

Dynamics depends on 
the past and future time. 
(Violates “causality.”) 

Quantum force does not depend on the 
past and future time. 
(Satisfying “causality.”) 

Temporal part of  
4-current density 

not positive-definite in 
general. 

is positive-definite in general. 

4-current density 4-current density not 
time-like in general. 

4-current density is time-like in general 

order of the PDE 2nd order in both space 
and time. 

2nd order in time (T ),  
4th order in space (C) 

  The relativistic PDE is equivalent to the Klein-Gordon 
equation, except for the fact that the quantum force 
vector has no ensemble time (T ) component (it “lives” 
on the simultaneity submanifold).  



Conservation Laws  
•  From Noether’s theorem, we obtain the Euler-Lagrange 

equation 

•  as well as the Noether current equation 

•  The conservation of energy and momentum can be 
obtained from these equations. 

where   
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