-
o e e, — S | A | -—-'L-.L-.'-—--\-A__-—~ " \ '----

e _exgecta o‘?fﬁ‘e—n Y, S as weak values. ‘

Basil J. Hiley.

e D 0 Wi T



http://www.bbk.ac.uk/tpru

Some Surprising Results.

1. von Neumann's 1931 approach 1s mathematically identical to Moyal's 1949
[von Neumann, Math. Ann. 104 (1931) 570-87]

[Moyal, Proc. Camb. Phil. Soc, 45, (1949), 99-123]

2. Moyal’s conditional expectation values of momentum and energy are intimately related to
the energy-momentum tensor TH (x, ) of standard quantum field theory.
!

plx,t Pf"i z,t)=T%(z, ) and p(z,t Ey(z,t) = TDD{:I,f}
M
[Hiley, and Callaghan, arXiv: 1011.4031 and arXiv: 1011.4033.]

3. The Moyal momentum IS the Bohm momentum for the Schrodinger, Pauli and Dirac particles.

[Hiley, and Callaghan, Found. Phys. 42 (2012) 192-208]

4. The Moyal/Bohm approach is about non-commutative probability theory.
[Hiley, arXiv 1211.2098]

5. The Moyal/Bohm momentum is the weak value of the momentum operator,

<$|ﬁ|’§b{$ tj)‘ [Leavens, Found. Phys., 35 (2005) 469-91]
P! _(z.t) = i [Wiseman, New J. Phys., 9 (2007) 165-77.]
yr, B
<$|¢{:I: t}} [Hiley J. Phys.: Conference Series, 361 (2012) 012014.]

6. Bohm momentum, energy, Bohm kinetic energy and hence the quantum potential can be measured
l,lSiIlg weak values. [Rob Flack next lecture]

7. Classical physics emerges from a non-commutative statistical (quantum) structure grounded in process.

[Hiley, Lecture Notes in Physics, vol. 813, pp. 705-750, Springer (2011).]



The von Neumann 1931 Algebra.

Start with translations in x and p.

iy

U(a) =exp(iaP) and  V(8) = exp(iBX) X, P] =1
Combine to give S(a, B) = expi(aP + 8X) Element of Heisenberg group Radar!

a, 3 span a symplectic space. Symplectic Clifford algebra E Enveloping algebra of Heisenberg algebra.
[Crumeyrolle, Orthogonal and Symplectic Clifford Algebras, 1990]

The symplectic Clifford group 1s the metaplectic group [Guillemin, and Sternberg, Symplectic Techniques in Physics, Cambridge (1984)]
von Neumann shows A {1{:[15, Iﬁ} ;Elh _ f f rl[ﬂi, ﬁ}g(ﬂ, lﬁ}dﬂdﬁ
clement of the SympleCtiC Space ‘Symbol’ [von Neumann, Math. Ann. 104 (1931) 570-87]

Formally introduce  py(z) — [ = [¢){¢| = ¥L(z)¥gr(z)] and form  Fy(q, 8) = Tr[S(a, 8)pu(z)]

A) = [ [ ala, p)Fs(a, B)dads

I [Moyal, Proc. Camb. Phil. Soc, 45, (1949), 99-123]

looks like a probability measure?

Classical expectation value?  Unfortunately Fiy (ﬂg: ﬁ} can take negative values.  [Bartlett, Math. Proc. Cam. Phil. Soc.41, (1945) 71-3].
[Groenewold, Physica, XII, (1946) 405-460]

Don’t worry we are in a non-commutative symplectic manifold. Non-commutative Probability



Non-commutative Phase Space.

Products of symbols If C = AB then C(z,z') = f A(z,z")B(z",z")dz"

von Neumann shows ¢(a, 3) = a(a, 8) * b(a, 3) = f /egihﬁ_ﬁ“]a{*}r — o, 0 — B)b(a, B)dadf

[von Neumann, Math. Ann., 104 (1931) 570-87]
Moyal product

Special case: axff—ffxa=1
Moyal chose new variables @ —+ & 8—p [Moyal, Proc. Camb. Phil. Soc, 45, (1949), 99-123]

Non-commutative Phase Space



A Closer look at the Non-commutative Moyal Algebra.

With star product we can form two types of bracket

axb—bxa axb+bxa
— . b —
Moyal bracket Baker bracket

Moyal showed the star product can also be written in the form
L= = —
a(zx,p) *»b(z,p) = alz,p)explif( 8.0, — 8,.0,)/2]b(z,p)
Easy to show that T*p—p*xT =1h

Then we have

—

{a,b} 5 = 2a(z,p) sin[A(8, 8, — 04 0,)/2)b(z, p)

— — — =
{a,b}pp = a(z,p)cos|h(0 .8 p — 0. 0,)/2|b(z,p)
The important property of these brackets 1s they contain the classical limit.

Moyal bracket becomes the Poisson bracket. {a,b}ar5 = {a,b}pp + O(K?) = [0,a8,b — D,ad.q]

Baker bracket becomes a simple product {a,b}pr = ab+ O(K?)



The Dynamics.

Because of non-commutativity

H(z,p) » Fy(z,p,t) = i{Zw}_l / E_iTF’i,f)*{:iE — T/'Ej??}nb{:ﬂ + 7/2)dT

- “
Fo(e,p.)» H(z,p) = =i [ €74 (@~ 1/2) 0 b(z +7/2
Subtracting gives Moyal bracket equation

Classical Liouville
equation to O{ﬁgj
T — hT

8¢F¢. = {H*Fw —F¢*H)f2i = {H-.-Fuln}MB

Adding gives Baker bracket equation {H.Fy}lpp=(HxFy+ Fy*xH)/2

2{H,F}pp =i(2m)~! / e P [ (z — T/?)HHL‘{I +7/2) — ¢ (z — T/?){EHJL'(I + 7/2)dT

Writing ¢ = Re*S we obtain

’E;,")*%}i’tj) _ [w"‘gﬂi' —ﬂrﬂ'*{gﬂfﬁ] _ !&R(E + 7/2) B O R(x — T/Q):| ny [E’;S{:E—FT/Z) N nS(z —7/2)
W PY*ah R(z + 7/2) R(x —1/2) S(z+7/2) Sz —1/2)

Go to the limit O(%*)
H*Fﬂ. + FyxH = —E{E}tS}Fﬁ, + O{:ﬁﬂ} = 2{3;5’)51# -+ {H, F&}EB =0

05 +H=0 Classical H-J equation.

ot

No need for decoherence to reach the classical level



Time Development Equations.

X — P Phase Space

OF 3
En + |F,H|yp =0

Z@F—F [F,H]BB =0

T

von Neumann/Moyal algebra




Surprise Number 2.
Moyal asked: if Fy,(x, p) is treated as a probability distribution

What is the conditional expectation value of the momentum?

1
p{z)p = fPFg& (z,p)dp = (E) (O, — 3m2)15(31)1ﬁ($2)]m1=32=m Moyal momentum
With ¥ = Re*® | we find plz) = %[ﬂ&’"?ﬂ) — (VY™ W] =VS Moyal momentum = Bohm momentum.

Moyal’s transport of D

ai(lﬂf"k) + Eaﬂl (Ppkamfﬂ) + PS:L;.,H =0

Again with ¥ = Re*®, we find

g [as V2p .
Ox [{;}t +H - m] =0 Quantum potential.
Or /
i} ?Ep ds 1 9 1 ?ER
ot TH amp = ot Tam (VS V-5 =0

Quantum Hamilton-Jacobi equation.

For details see appendix of Moyal’s paper.
[Moyal, Proc. Camb. Phil. Soc. 45, (1949), 99-123.]

[Hiley, Proc. Int. Conf. Quantum Theory: Reconsideration of Foundations 2, (2003) 267-86,]



X — P Phase Space

Time Development Equations.

Bohm Phase Space

Configuration Space.

oF _ _
5 + [F,H|pp =0

E@F—F [F,H]EB =0

T

von Neumann/Moyal algebra

OF, V.. (vamgj") _0

ot m
PB — v.’LS.E
88, 1 [88,\°
3t+2m(ﬁx) TQ: V=0
Moyal/Bohm




Time Development of pu (z,t) in Configuration Space.

For a pure state pg(z,t) is idempotent and of rank one.
In the symplectic non-commutative algebra we can form pg = U ¥p; with ¥; € Ty and T e Iy

Heuristic argument:- Elements of a left and right ideal.

V) (Y| = p=ANB = AeB=T ¥ =pyg

[Dirac, Math. Proc.Cam. Phil. Soc., B (1939) 416-418]
Standard ket A) Idempotent }{ [Dirac, Quantum Mechanics 3rd Edition p. 79 (1947)]

[Hiley Lecture Notes in Physics, vol. 813, pp. 705-750, Springer (2011)]

As before we have two time development equations

EE'R{S i'IIL} = ‘I’R{H'I'L} and —i{'yﬂ 0 E}‘I'L = {‘I’RH}WL

which we combine by adding and subtracting to find;-

i :{_ﬁ}tlIfL}‘l'R + wL[wRE): = (E‘I'L) Vp— VL (‘I'RE) =[H,p]- (A

i|(Bwr)vp -0 (¥r0 )| = (H) Up+ vy (WpH) =[Hols (B

From (A) we obtain i0p = [H, p|_ Liouville equation

Conservation of Probability

From (B) we obtain

I e New equation?
iUp 0 Uy =[H,p- q

[Brown, and Hiley, 2000, quant-ph/0005026.]

. [Brown, Ph.D. Thesis, University of London, 2004.]
Conservation of Energy.



X — P Phase Space

Time Development Equations.

Bohm Phase Space

Configuration Space

OF 3
En + |F,H|yp =0

Z@F—F [F,H]BB =0

T

von Neumann/Moyal algebra

TTL

FE:‘F&:S&:

8S. 1 [88,\°
dt +2m(§$) TQ: +V =0

I

Bohm model

Quantum algebra



Project Quantum Algebraic Equations into a Representation.

Project into representation using p _ a)l

al
.0P(a a8 B
20D 4 (o, H]), =0 2P(a) 5, + (Ip, Hl4), = 0
Choose P. =|x)(x| b= P’ +K’22 Harmonic oscillator
. 2m 2
8S, 1 (88.\° Kuz? 1 [8°R,
oL V. (vams“")ﬂ ot +2m(6‘w) T T omR, \ 822 ) "
ot m
Conservation of probability Quantum Hamilton-Jacobi equation.

[M. R. Brown & B. J. Hiley, quant-ph/0005026]

But there is more!

Choose P, =|p)(p| fg_P KX Quantum potential
2m 2 /
oP, S 2 2 0
—F—f—vp. (vap p) :D %_{_ P +K E?Sp . K 8 Rj_; :D
ot m ot ' 2m ' 2 \ Op 2R, \ 0p?
— . a5,
Possibility of Bohm model in momentum space. Butnow = = — E
Tyai : : . . 0PV (X))
rajectories from the streamlines of probability current. J,= (p| o D)

What is called “Bohmian Mechanics” is but a fragment of the deeper non-commutative geometry.



Surprise Number 3:- Energy-Momentum Tensor.

oL oL
pr v Lk
1 = ~{ oY * sy
Take the Schrodinger Lagrangian: L=-— ﬁ?@b* -V + %[@b*{ﬁiwj — (O™ )] — Vb~
and find

T = — [(0“4* ) — ¥ (0"¥)] = S [w* D " ¥ = —pd"S

Recalling that ~ Py(z,t) = Pg(z,t) = VS(z,t) and En(z,t)= Ep(z,t)=—-0,5(z,t)

Then explicitly: |
p{I,t}PL{HJ,tJ — Tﬂj{:ﬂﬂtj and plz,t)Ep(z,t) = TDD{I:t}

These are the LOCAL expressions for the energy-momentum of the particle.

Conservation of energy is maintained through the quantum Hamilton-Jacobi equation.

Similar relations hold for the Pauli and Dirac particles. Use orthogonal Clifford algebra.

[Hiley, and Callaghan, arXiv: 1011.4031 and arXiv: 1011.4033.]

Standard QFT deals with the GLOBAL expression of energy-momentum

Pi = f T (z,t)d%z E= f T%(z,t)d’z



Surprise Number 4:-Weak Values.

We will show that these quantities are related to weak values through:

pP;g = p8;8 = —T% = R[ip(P;)w] Moyal/Bohm momentum.
pEp = —p8,8 = —T°° = R[ip{P,)w] Moyal/Bohm energy.
A
What is a weak value? Aw = %{L"J};} N.B. Ay e€C

[Aharonov and Vaidman, Phys. Rev. 41, (1990) 11-19]

How do they appear in the formalism?

(Y| Al) = Z{an&j} (5] A1) where |¢;) form a complete orthonormal set.
H Post select
en
_ (@5]1) ) _ (¢j|AlY)
Aly) = ; |AlY) = -
wla) = Y wio) (15451 @) = 30,2000
~—

Weak value.

Remember wé:l?irf) is a complex number. Tt is clearly a transition probability amplitude.

But how is this related to the energy-momentum component T°H(x,t)?



Weak values when P is involved.

eak value _ (| Pl(t))
e Flw = o)
Form: @lPlY(®) = [ @lPle)(@b(®)ds’ = ~iVi(a,

Write ¥(z,t) = R(x, t)eis{m‘” then
(Phw = VS(2,) —iVp(@,1)/20(2,) with p(@,1) = [¢(, 1)’

/ AN

Moyal/Bohm momentum.  osmotic momentum.

Real part of weak value:

Rlip(Phw] = [Vo* (@) (@) — v* (@) V(@) = ¢*(2) Vi(e) = pP5

Moyal/Bohm momentum
T% (z,1)

Imaginary part of weak value: $[—ip(P)w| = [Vv*(z)|v(z) + ¢ () [V (x)] = Vp(z)].
[Bohm and Hiley, Phys. Reps, 172, (1989) 92-122.]

The Bohm Kinetic energy.

V2R(zx)

RU{P?)w] = (VS(x))? — = P2 .

(P2)w) = (VS@)? - Y5 = P +Q

\v4

S[(P)w] = V2S(z) + ( P(‘“})w{m).
plx)

[Leavens, Found. Phys., 35 (2005) 469-91] [Hiley, J. Phys Conf. Series, 361, (2012), 012014]

[Wiseman, New J. Phys., 9 (2007) 165-77.]



Bohm Approach and Pauli spin.

RlefSL)

Density element  p(z) = ¢r(z)¢r(x) € orthogonal Clifford algebra With ¥ = ( RoeiS2

The Bohm momentum and energy

pPg(z) = p1(x)V.51(z) + p2(z) V. S2(z) = Rlip(P;j)wy]  Bohm Momentum

pEg(z) = p1(x)8,51(x) + pa(x)0:Sa(x) = Rlip(Py)w] Bohm Energy

The Bohm kinetic energy is
RI(P*)w] = Pi(z) + [2(V.W(z) - S(z)) + W*(z)] = Pp + Q.

Spin of particle S = i(¢resdr) and  pW = V_(pS) with ¢r(z) = ¢y

[Hiley, and Callaghan, Found. Phys. 42, (2012) 192 and Maths-ph: 1011.4031]

hi I h . o [Hiley and Callaghan, Fond. Phys 42 (2012) 192-208,
This generalises to the Dirac particle math-ph:1011.4031 and 1011.4033]



Transverse coordinate[mm)

Photon ‘trajectories’.

4r [Kocsis, Braverman,Ravets,Stevens,Mirin, Shalm, Steinberg,
Science 332, 1170 (2011)]

2 -
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W A e, he [Philippidis, Dewdney, and Hiley, Nuovo Cimento 52B (1979) 15-28.]

Experimental--Photons. [Prosser, JTP, 15, (1976) 169]

Problems with concept of a photon trajectory

We measure T% (z, t), Poynting’s vector.
What is the meaning of the Poynting vector for a single photon?

What is the meaning of a photon at a point?

Must g0 to field theory [Bohm, Hiley, and Kaloyerou, Phys. Reports, 144, (1987) 349-375.]
These criticisms do not apply to non-relativistic particles with finite rest mass (Schrodinger particle)

Need new experiments using atoms.



