Vienna University of Technology

Spin and charge from space and time

in cooperation with Roman Bertle, Roman Höllwieser, Markus Jech, Alexander Kobushkin, Mario Pitschmann, Lukas Schrangl, Joachim Wabnig

Charge and Spin

Charge

- feels Coulomb and Lorentz forces,
- ▶ is quantised, $e_0 = 1.602 \cdot 10^{-19}$ C, Faraday's laws of electrolysis, J. J. Thomson 1897, Millikan 1908,
- ▶ NO electrodynamical and quantum mechanical reason to be quantised.

► Spin s

- no classical analogue,
- ▶ 2 spin states of electron, spin up and down,
- ▶ group SU(2), like isospin,
- j = l + s, spin s contributes to angular momentum, spin has some relation to space, isospin is only internal degree of freedom.

Space-Time

- special relativity
 - space and time are related,
 - no absolute space
- gravitation theory
 - space-time is not rigid,
 - space-time is deformed by matter and energy density,
 - length scales are coordinate dependent,
 - described by metric $g_{\mu\nu}$ in gravitational theory,
 - by local translations in Poincarè gauge theory.

Charges – properties of Space?

Let us try a model · · ·

Imagine · · ·

flat Minkowski space at macroscopic distances

dislocations at microscopic distances

··· "dislocations" by local rotations of space.

local rotations of Space

by rotating Dreibein (Triade) in space.

Rotation by 2π in every direction.

Describe rotations of Dreibein

- ▶ Quaternions $Q = q_0 + q_1 \mathbf{i} + q_2 \mathbf{j} + q_3 \mathbf{k}$: $\mathbf{i}^2 = \mathbf{j}^2 = \mathbf{k}^2 = \mathbf{i}\mathbf{j}\mathbf{k} = -1$
 - Rodriguez 1840 (Annales de Gergonne)
 - ► Hamilton 1843
- ▶ SO(3)-group: $2\pi = 4\pi$ -rotation,
- ▶ SU(2)-group: $2\pi \neq 4\pi$ -rotation,
 - ► SU(2) double covering group of SO(3),

We use SU(2)- description

$$egin{aligned} q_0^2 + ec q^2 &= 1, \; ec q = (q_1, q_2, q_3), \; q_0 = \cos lpha, \; ec q = ec n \sin lpha, \; ec n^2 = 1. \end{aligned}$$
 $egin{aligned} (\mathbf{i}, \mathbf{j}, \mathbf{k}) &= -\mathrm{i} ec \sigma, \; , \quad x^\mu = (ct, \mathbf{r}). \end{aligned}$ $Q(x) &= \mathrm{e}^{-\mathrm{i} lpha(x) ec \sigma ec n(x)} &= \cos lpha(x) - \mathrm{i} ec \sigma ec n(x) \sin lpha(x), \end{aligned}$

Field configurations $\pm Q(\mathbf{r})$ are identical, 3 degrees of freedom SU(2) isomorphic to S³, the sphere in 4 dimensions.

Describe geometry of S^3

Curves in space-time, parametrised by s and t: $x^{\mu}(s), x^{\mu}(t)$ vector field: $(\partial_s Q) Q^{\dagger} = -i\vec{\sigma}\vec{\Gamma}_s$, connection one-form,

$$\vec{\Gamma}_s = \dot{\alpha}\vec{n} + \sin\alpha\cos\alpha\,\dot{\vec{n}} + \sin^2\alpha\,\vec{n} \times \dot{\vec{n}}$$

area density: $\vec{R}_{st} = \vec{\Gamma}_s \times \vec{\Gamma}_t$, connection two-form (curvature).

Figure: map: $dx \times dy \mapsto \vec{\Gamma}_x \times \vec{\Gamma}_y dx dy$

Relate geometry to physics

► area density (curvature) → field strength:

$$\vec{R}_{xy} = \vec{\Gamma}_x \times \vec{\Gamma}_y = \frac{\vec{\Gamma}_x \times \vec{\Gamma}_y \, dxdy}{dxdy} \mapsto \vec{E}_z = \frac{e_0}{4\pi\epsilon_0} \vec{R}_{xy},$$

$$c\vec{B}_z = \frac{e_0}{4\pi\epsilon_0} \vec{R}_{tz}$$

$$^*\vec{F}_{\mu\nu} = \frac{e_0}{4\pi\epsilon_0} \vec{R}_{\mu\nu}$$

$$\vec{R}_{\mu\nu} = \partial_{\mu}\vec{\Gamma}_{\nu} - \partial_{\nu}\vec{\Gamma}_{\mu} - \vec{\Gamma}_{\mu} \times \vec{\Gamma}_{\nu}$$

- energy density \mapsto (field strength)²,
- action density: $\mathcal{L}_e = -\frac{\alpha_f \hbar c}{4\pi} \frac{1}{4} \vec{R}_{\mu\nu} \vec{R}^{\mu\nu}$

Static elementary Charge

Potential: cosmological function

action density: $\mathcal{L}_e = -\frac{\alpha_f \hbar c}{4\pi} \frac{1}{4} \vec{R}_{\mu\nu} \vec{R}^{\mu\nu}$, Soliton dissolving, not yet stable

We need: Equilibrium between compressing and broadening

Potential term $\Lambda(q_0)$ with minimum on S_{equ}^2 of S^3 .

Compressing term:
$$\Lambda(q_0) = \frac{q_0^{2m}}{r_0^4}, \ m = 1, 2, 3, \cdots$$

Lagrangian:
$$\mathcal{L} = \mathcal{L}_e - \mathcal{H}_p = -\frac{\alpha_f \hbar c}{4\pi} \left(\frac{1}{4} \, \vec{R}_{\mu\nu} \vec{R}^{\mu\nu} + \Lambda \right)$$

Consequences: two-dimensional degeneracy of vacuum,

scale
$$r_0$$
, $\rho = r/r_0$

Stable minima of energy (Solitons)

▶ hedgehog ansatz: $\vec{n}(x) = \frac{\vec{r}}{r}$, x = (ct, r)

$$Q(x) = \cos \alpha(x) + i \vec{\sigma} \vec{n}(x) \sin \alpha(x), \quad \text{with} \quad \alpha = \alpha(\rho), \qquad \rho = r/r_0$$

minimisation of energy leads to non-linear differential equation

$$\partial_{\rho}^{2}\cos\alpha + \frac{(1-\cos^{2}\alpha)\cos\alpha}{\rho^{2}} - m\rho^{2}\cos^{2m-1}\alpha = 0$$

 \triangleright solution for m=3

$$\alpha(\rho) = \operatorname{atan}(\rho).$$

► energy of soliton

$$E = \frac{\alpha_f \hbar c}{r_0} \frac{\pi}{4}$$
 with $\alpha_f \hbar c = 1.44$ MeV fm.

► compare with electron

$$m_e c^2 = 0.511 \text{ MeV}$$
, we get $r_0 = 2.21 \text{ fm}$.

General 4-dimensional formulation

- defined by Lagrangian $\mathcal{L} = -\frac{\alpha_f \hbar c}{4\pi} \left(\frac{1}{4} \vec{R}_{\mu\nu} \vec{R}^{\mu\nu} + \Lambda \right)$,
- general equations of motion,
- relativistic dynamics of arbitrary many-soliton configurations, dynamics of solitons and waves,
- differences to Maxwell electrodynamics:
 - (+) charges and fields (non) separated, $Q(x) \leftrightarrow A^{\mu}(x)$, $j^{\mu}(x)$,
 - \blacktriangleright (+) numbers of degrees of freedom: $3 \leftrightarrow 8$,
 - (+) (non) integer multiples of elementary charge e_0 ,
 - ► (+) (in)finite self energy of charges,
 - ▶ (+) charges extended (point-like) objects,
 - (?) non-vanishing magnetic currents (non-solitonic),
 - \triangleright (?) α -waves.

Separate charges and electro-magnetic fields

large distance behaviour: $r \gg r_0$, electro-dynamic limit, Dirac limit

- Maxwell equations
- Coulomb and Lorentz forces
- ▶ U(1) gauge symmetry (rotation of Dreibein around \vec{n})
- two massless excitations: photons as Goldstone bosons topological quantum number $S^3 \mapsto S^2$, Hopf index, possibly: Hopf index = photon number

Conjectures:

- particles are solitons.
- only particles can be detected,
- waves escape our detectors, they can't be caught, α -waves, magnetic currents, non-solitonic \vec{n} -waves, contributions to dark matter and dark energy???

Spin, a topological quantum number

Field configuration $Q(\mathbf{r})$ of unit charge covers hemisphere of S^3 , $s = \frac{1}{2}$.

Spin quantum number s

$$s = \left| \frac{1}{V(\mathbb{S}^3)} \int_0^\infty \mathrm{d}r \int_0^\pi \mathrm{d}\vartheta \int_0^{2\pi} \mathrm{d}\varphi \, \vec{\Gamma}_r(\vec{\Gamma}_\vartheta \times \vec{\Gamma}_\varphi) \right| \tag{1}$$

Magnetic quantum numbers $m_s = \pm 1/2$: Upper and lower hemisphere

Spin, an angular momentum

Symmetry broken vacuum, $Q(\infty) = -i\sigma_3$, Field at infinity is constant, No rigid rotation possible,

S=0, Charge Zero

Emerging quantum mechanics

where is room for quantum mechanics?

Quantum fluctuations:

- particles are disturbed on their classical path,
- by waves propagating with velocity of light,
- no special reference frame,
- average momentum is unchanged by such perturbations

Interference:

- solitons are extended objects and possibly get in resonance with waves,
- ▶ interference by Couder's mechanism.

Summary

Conclusions

- Only Space and Time.
- Only 3 rotational degrees of freedom of space were used.
- ▶ Charges can be described by 2π -rotations of space.
- Spin angular momentum as Eigen-angular momentum, Spin as a consequence of orbital motion.

Conjectures

- Stable particles are stable solitons with topological quantum numbers.
- Only particles can be detected.
- Waves escape our detectors.
- Waves disturb the pathes of particles -> Quantum Mechanics
- Particles get in resonance with waves -> interference (in analogy to Couder's experiments)

Aftermath

Einstein: Physics should be as simple as possible.

I think: Physics is geometry and not algebra.

We should use algebra only to describe the geometry.

Thanks