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Particles, waves and trajectories:

210 years after Young’s experiment

Ángel S Sanz

Instituto de F́ısica Fundamental (IFF–CSIC), Serrano 123, 28006 - Madrid, Spain

E-mail: asanz@iff.csic.es

Abstract. Mermin’s “shut up and calculate!” somehow summarizes the most widely accepted
view on quantum mechanics. This conception has led to a rather constraining way to think and
understand the quantum world. Nonetheless, a closer look at the principles and formal body of
this theory shows that, beyond longstanding prejudices, there is still room enough for alternative
tools. This is the case, for example, of Bohmian mechanics. As it is discussed here, there is
nothing contradictory or wrong with this hydrodynamical representation, which enhances the
dynamical role of the quantum phase to the detriment (to some extent) of the probability
density. The possibility to describe the evolution of quantum systems in terms of trajectories
or streamlines is just a direct consequence of the fact that Bohmian mechanics (quantum
hydrodynamics) is just a way to recast quantum mechanics in the more general language of the
theory of characteristics. Misconceptions concerning Bohmian mechanics typically come from
the fact that many times it is taken out of context and considered as an alternative theory to
quantum mechanics, which is not the case. On the contrary, an appropriate contextualization
shows that Bohmian mechanics constitutes a serious and useful representation of quantum
mechanics, at the same level as any other quantum picture, such as Schrödinger’s, Heisenberg’s,
Dirac’s, or Feynman’s, for instance. To illustrate its versatility, two phenomena will be briefly
considered, namely dissipation and light interference.

1. Introduction
In 2013 we have celebrated the 100th anniversary of Bohr’s atomic model [1, 2], which led to the
development of quantum mechanics in the 1920s. However, we have also celebrated the 210th
anniversary of Young’s famous two-slit experiment. In 1803 Thomas Young presented to the
Royal Society his experimental “proof of the general law of the interference of two portions of
light” [3, 4]; more than one hundred years later this experiment has become one of the most
influential ones in physics [5], particularly due to its tight connection with quantum mechanics.
The fact is vividly expressed at the beginning of the third volume of the Feynman’s Lectures on
Physics [6], where we read:

In this chapter we shall tackle immediately the basic element of the mysterious behavior
in its most strange form. We choose to examine a phenomenon which is impossible,
absolutely impossible, to explain in any classical way, and which has in it the heart
of quantum mechanics. In reality, it contains the only mystery. We cannot make the
mystery go away by “explaining” how it works. We will just tell you how it works.
In telling you how it works we will have told you about the basic peculiarities of all
quantum mechanics.
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The phenomenon referred to here, namely quantum interference, is precisely the same
phenomenon observed by Young —although for light instead of massive particles.

Nowadays the enormous success of quantum mechanics is indisputable. Not only this theory
explains the most fundamental aspects of the physical world, but it has also given rise to
technological applications with a direct impact on our daily life. Now, 210 years after Young’s
experiment, what do we really know about quantum systems? Unfortunately, not much (if
anything at all). That is, although we have a very accurate theory, our understanding of
this theory still relies on the ideas prevailing in the late 1920s and 1930s, strongly linked to
the experimental capabilities at that moment. At present fine experiments can be performed
in the time domain, reproducing Young’s experiment particle by particle. Even though the
general conception of quantum systems is still anchored in somewhat old-fashioned, self-imposed
constraints, which have more to do with positivist prejudices than with limitations of the
theoretical framework of quantum mechanics [7, 8]. Mermin’s quotation “shut up and calculate!”
[9, 10] accurately summarizes this position. Obviously, this has constituted (and still constitutes)
an important obstacle to the development and advance of new ways to understand the quantum
world, particularly those relying on the concept of trajectory. This is the case, for example, of
Bohmian mechanics.

The purpose of this communication is to show that there is nothing contradictory or wrong
with Bohmian mechanics. Rather than a matter of taste, the discussion will show that this
approach is just another representation (a hydrodynamical one) of quantum mechanics, at the
same level as other more standard representations, e.g., Schrödinger’s, Heisenberg’s, Dirac’s,
Feynman’s, etc. Actually, although it goes beyond the scopes of this work, leaving aside aspects
commonly associated with Bohmian mechanics, like the possibility of hidden variables or the
ontology of the wave function, it can readily be seen that it is just a direct translation of
quantum mechanics into the more general language of the theory of characteristics [11]. Now,
why Bohmian mechanics? Because it focuses on the quantum phase, which is not a quantum
observable, although it plays a decisive role on quantum system dynamics. Bearing this in
mind, this work is organized as follows. The essential elements of this approach are introduced
in Sec. 2. In Sec. 3 a brief overview on how this approach and similar ones have been applied
to different physical problems is presented. This makes readily apparent the nature of Bohmian
mechanics as a theory of characteristics, even if the latter’s formalism is not explicitly discussed.
In Sec. 4 Bohmian mechanics is applied to two different phenomena, namely dissipation and
light interference, in order to show its versatility. To conclude, in Sec. 5 a series of final remarks
are summarized.

2. Waves, trajectories and quantum mechanics
In appearance, the formulation of quantum mechanics in the Schrödinger representation keeps
a close analogy with classical wave theory. Within this representation, quantum systems are
described by a probability amplitude or wave function, Ψ, which evolves according to the partial
differential equation

i~
∂Ψ

∂t
= − ~2

2m
∇2Ψ + VΨ. (1)

This equation describes the transport of probability instead of energy, as it happens with classical
waves. Nonetheless, as Eq. (1) is formulated, this is not evident, since it rather displays the form
of a typical diffusion equation (with a complex diffusion coefficient). After Max Born proposed
the statistical interpretation, we say that the probability density, ρ ≡ |Ψ|2, gives the probability
that the quantum system has (or is in) a particular configuration. Therefore, a representation
of ρ in time gives us information on how the configurational probability of the system evolves
(is transported) in time, i.e., which are the configurations (e.g., positions) where we have more
or less chance to find the system. If we look at a typical outcome obtained from an interference
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experiment, even in the case of very large and complex molecular systems [12], we find that these
particles distribute according to ρ, in agreement with Born’s statistical interpretation. However,
particles are detected one by one at different places. The individual positions (evolutions) of
these particles, however, are no quantum observables.

Motivated by that fact, in 1952 David Bohm proposed [13] a model that could explain such
individual arrivals at the same time that could also account for the collective particle behavior, all
without appealing to von Neumann’s reduction postulate. He regarded the individual systems
as “hidden variables”. To develop this interpretative model, Bohm considered Schrödinger’s
equation (1) plus the nonlinear (polar) transformation

Ψ(r, t) = ρ1/2(r, t)eiS(r,t)/~. (2)

This transformation relates the complex-valued fields (Ψ,Ψ∗) with the real-valued fields (ρ, S),
where S describes the local variation of the quantum phase. Substituting (2) into the time-
dependent Schrödinger equation and then separating the real and imaginary parts of the resulting
equation, one finds

∂ρ

∂t
+ ∇·

(
ρ
∇S
m

)
= 0, (3)

∂S

∂t
+

(∇S)2

2m
+ V − ~2

2m

∇2ρ1/2

ρ1/2
= 0. (4)

The continuity (or conservation) equation (3) rules the ensemble dynamics, i.e., the number of
particles described by the probability density has to remain constant; the quantum Hamilton-
Jacobi equation (4) describes the time-evolution of the phase field, where the last term on the
right-hand side is the so-called quantum potential. These two equations make more apparent
the physical meaning of Eq. (1) as a transport equation. In analogy to the classical Hamilton-
Jacobi equation, if S is identified with the classical action, then a momentum p = ∇S can be
postulated (Bohm’s momentum). This momentum can be expressed as p = mṙ, which gives rise
to the guidance equation of motion

ṙ =
∇S
m
. (5)

The local velocity field v = ṙ, which depends directly on the quantum phase, thus governs the
individual system dynamics and, in virtue of Eq. (3), gives rise to averages that are in agreement
with the results obtained directly from Schrödinger’s equation. It is interesting to note at this
point that Eq. (5) does not need to be postulated, but it arises automatically within the theory
of characteristics [11]. The integration of this equation in whichever evolution parameter (e.g.,
time) generates the corresponding characteristics perpendicular to S-surfaces of constant phase.

Previous to Bohm’s model, de Broglie formulated a similar one [14] where particles were
assumed to be singularities guided by the wave. Both models pursued essentially the same
idea, namely to explain the ensemble behavior of quantum systems at the same time that their
individual motion was also properly described. The meaning of individual system, however, is
rather uncomfortable, since its (individual) evolution is not accessible. To understand this idea
with a simple example, think of the stream of a river: its precise characterization does not provide
any information at all on the individual motion of its molecular constituents. In this regard,
it is probably more precise the approach developed by Erwin Madelung in 1926. Shortly after
Schrödinger proposed his equation, Madelung provided a clear prescription [15] to reformulate
such an equation in hydrodynamic form. Accordingly, quantum systems could be visualized
in terms of a series of streamlines, which would follow the flow associated with the system
probability density. That is, we know nothing about the precise motion of individual systems
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Figure 1. The different representations of quantum mechanics provide us with a different
description of quantum systems. Typically quantum systems are thought from a complementary
viewpoint (left). Bohmian mechanics, however, gives preference to the configuration space and
emphasizes transport-related properties (right).

(they could be evolving in a Brownian-like fashion, for example), but still we can determine how
the ensemble probability flows throughout the corresponding configuration space.

Following Madelung’s view, Eq. (5) needs not be postulated, but it is a consequence of the fact
that Eq. (3) is a (real-valued) transport equation. This allows us to establish a direct analogy
with classical fluid dynamics. Hence, making use of the local probability current density,

J =
~
m

Im (Ψ∗∇Ψ) = vρ, (6)

where v is a local (hydrodynamic) velocity field, one finds the expression

v =
J

ρ
=
∇S
m
, (7)

which is equivalent to the above Bohmian velocity. The integration in time (or whichever
parameter) of Eq. (7) generates a family of streamlines or paths (for each wave function
considered) along which the quantum fluid propagates, just as in the case of a classical fluid.
As it can be inferred, the first equality goes beyond Bohmian mechanics and allows to define
streamlines in any system characterized by a certain density and a vector that transports it
through the corresponding configuration space, regardless whether such a density describes a
quantum system or not. Notice that in this case, instead of the set of equations (3) and (4), we
have a set of hydrodynamic equations, as shown by Takabayasi [16–18].

Taking into account the fact that Bohmian mechanics is a different theory, but only a
reformulation of quantum mechanics, one may wonder why it is worth using. The answer is
very simple, it is just a matter of which aspect of the physical system one wishes to stress.
This is nicely illustrated in Fig. 1. Typically, we understand quantum systems in a somewhat
dichotomic way, e.g., either wave or particle, position or momentum, energy or time, etc,
emphasizing the so-called complementarity (see left panel). However, we may also be interested
in transport issues, for which Bohmian mechanics constitutes a more convenient picture (right
panel), since it describes the probability flow in configuration space without caring about any
other complementary aspect. In this regard, we find, for example, that probably one of the most
relevant and distinctive properties revealed by this quantum hydrodynamic formulation, is the
non-crossing [19, 20], i.e., the fact that quantum fluxes (described in terms of bunches of Bohmian
trajectories) cannot cross in configuration space at the same time. This is in compliance with the
outcomes obtained from a recent photon-by-photon realization of Young’s experiment [21]. As a
direct consequence of the non-crossing, one is able to establish well-defined quantum probability
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tubes [22, 23], i.e., tubes in configuration space along which the integral of the probability density
at a given time remains constant.

3. Hydrodynamic approaches in the literature1

As seen above, the hydrodynamic language of Bohmian mechanics enables a visualization
of quantum systems in terms of streamlines that follow the flow of the probability density.
This simple pictorial representation attracted the attention of the chemical physics community
immediately after the first wave-packet propagation schemes were developed and used in the
field by the end of the 1960s. Pioneers in this field were McCullough and Wyatt, who studied
the quantum dynamics of collinear atom-diatom reactions in hydrodynamic terms [24–26], just
in a period when classical trajectories were in fashion. The following quotation, extracted from
[25], gives a very clear idea of what this community was looking for:

Classical mechanics gives an amazingly good description of the probability density
and flux patterns during most of the reaction; however, the classical and quantal
descriptions begin to diverge near the end of the reaction. Essentially, the classical
reaction terminates before the quantal reaction. The dynamic behavior of the reaction
is hydrodynamically turbulent, as shown by transient whirlpool formation on the inside
of the reaction path.

This ended up with the development of the so-called quantum-trajectory methods [27] at the
end of the 1990s, just something that David Bohm himself thought to be the path to follow to
describe the physical systems.

In above case, a hydrodynamical viewpoint was adopted, without making an explicit
calculation of streamlines or trajectories (hydrodynamical vector fields were used instead).
Nevertheless, a few years later, in the middle of the 1970s, Hirschfelder and coworkers
materialized Madelung’s ideas when trying to recast solutions of Schrödinger’s equation in a
pictorial way for tunneling and vortical dynamics. As before, the underlying motivation was
seeking for a better understanding of the phenomena studied [28]:

This paper has resulted from an effort to get a better understanding of quantum
mechanics by making a thorough study of a very simple problem, [. . . ]. The
mathematics is simple, but the analysis is far-reaching.

Again, these studies came from the field of chemical physics. In this sense, it is interesting to
note that the first studies of barrier tunneling came from this community [28], thus predating
those that later on appeared following Bohm’s ideas [29].

In the 1980s we find a convergence to Bohmian mechanics from the field of molecular
magnetism [30, 31], where the quantum hydrodynamics was also in fashion. In particular, in
[30] we read:

A representation of the electron flow induced by the external field can be extremely
useful to understand molecular magnetism. To this end, maps reporting modulus and
trajectory of quantum-mechanical current density revealed a fundamental tool, whose
importance could be hardly overestimated.

By means of these representations one can observe very convolved trajectories describing
the electron current densities induced by external magnetic fields acting on different types
of molecular systems [31]. At an applied level, “these tools provide fundamental help for
rationalization of magnetic response properties, such as magnetizability and nuclear magnetic
shielding” [31].

1 The references here provided are rather scarce, but I think that they will be enough for the reader interested
in further enquiring about the use of streamlines/trajectories in the literature.
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The same motivation can be found even earlier in electromagnetism, where the tradition of
explaining phenomena in terms of rays was stronger and therefore there was not an urgent need
to appeal to the Madelung-Bohm scheme. Thus, in 1952, the same year that Bohm published
his work on hidden variables, Braunbek and Laukien published [32] a work where they studied
the diffraction by an edge (a perfectly conducting half-plane) by means of lines of average
electromagnetic energy flow, obtained from the analytical solution provided to this problem by
Sommerfeld in 1896 [33]. About 20 years later (again in the 1970s, when the computational
tools were already more sophisticated), Prosser produced [34] the first trajectories for Young’s
two slit experiment and provided an explanation in terms of “photon” trajectories [35]. These
trajectories preceded those obtained by Dewdney et al. for matter waves using Bohm’s model
[36]. Later on, different authors have treated the problem of electromagnetism in terms of
trajectories (an account can be found in [37]), until in 2011 Steinberg and coworkers performed
an experiment from which the first trajectories were inferred experimentally [21]. At a more
applied level, and in consonance with Madelung’s viewpoint, we also find works dealing with
streamlines in wave optics [38, 39] or transport through billiards [40], for example.

Of course, one could regard the trajectories for electromagnetic fields (radiation) as similar
to those for matter waves (massive particles). In the end, Maxwell’s equations can be seen as
equivalent to Schrödinger’s one [41]. However, we can move apart from these scenarios, and still
we find analogous streamline-based descriptions with similar purposes. This is the case with
sound waves, for example, some of which started appearing in the middle 1980s [42–46]. In
particular, in Ref. [42] we read:

A method is presented for computing the energy streamlines of a sound source. This
enables charts to be plotted showing, as continuous lines, the flow paths of the sound
energy from the vibrating surface to the nearfield and beyond. Energy streamlines
appear to be a new construct; they have some similarities to the velocity streamlines
used in fluid dynamics. Examples of the energy streamlines are given for the point-
driven plate in water. [. . . ] These streamlines make it easer for the eye to follow the
energy flow from the source into the nearfield and beyond. These paths are complicated,
in some cases, but are of considerable interest from several points of view.

This is precisely the role played by Bohmian mechanics in the study of quantum mechanical
systems! This role is clearer and clearer as one goes through Ref. [42] in more detail. While
searching through the literature, one finds remarkable the fact that in other areas of physics
dealing with waves (other than quantum mechanics or, by extension, quantum optics) the
visualization of flows is particularly relevant. Physicists have tried to develop methods based
on characteristics, like those described above, or just stroboscopic interferometric ones [47], in
order to explore and understand the behavior of the fluid qualitative and quantitatively. This is
in contrast with the reluctancy found in quantum mechanics to treat systems on equal footing.

According to the above discussion, the interest generated by the calculation of streamlines
associated with the transport of some quantity —e.g., probability, electromagnetic energy,
pressure energy— has led to a series of approaches that all converge to the very same need:
dealing with a tool that allows one to objectively monitor the transport of such a quantity. In
this regard, if quantum mechanics is separated from any other wave theory, one may end up
concluding that Bohmian trajectories represent real trajectories pursued by real particles (or, in
general, degrees of freedom), i.e., they are hidden variables. However, if this theory is properly
contextualized, we find that there is nothing that allows us to establish a direct connection
between the possible motion of real particles and this type of trajectories [20, 48]. Comparing
with other theories, and as it will be seen in the next Section, as much we can say that a Bohmian
particle is a particle that obeys a Bohmian dynamics, i.e., according to a (local) average drift
momentum, which provides the particle with nonlocal (global) hydrodynamic-like information.
Such a particle allows us to infer dynamical properties of the quantum fluid, which are usually
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“hidden” when studied by means of the wave function formulation. That is, Bohmian particles
are the quantum equivalent of classical tracer particles (or just tracers) that can be found in
other areas of physics and chemistry.

4. Some applications
4.1. Dissipative Bohmian mechanics
The first context where we are going to apply Bohmian mechanics in the sense described above,
namely as a hydrodynamic picture of quantum mechanics, is that of dissipation. Thus, consider
the well-known classical dissipative equation

mẍ+mγẋ+
∂V (x)

∂x
= 0, (8)

where m is the system mass and γ is the friction coefficient. According to this equation, the
dissipation undergone by the system is proportional to its speed at a given time, ẋ. In order
to determine the quantum analog, i.e., to specify the Schrödinger equation corresponding to
Eq. (8), we need to find a suitable Hamiltonian. One way to proceed is by considering [49] the
change of variables

X = x, P = meγtẋ = peγt, (9)

where (x, p) denote the physical variables, with p = mẋ, and (X,P ) the canonical ones. The
latter allow us to define the conservative Hamiltonian

H(X,P ) = ẊP − L =
P 2

2m
e−γt + V (X)eγt, (10)

and satisfy the usual canonical relations

Ẋ =
∂H(X,P )

∂P
, Ṗ = −

∂H(X,P )

∂X
, (11)

which enable the conservation of the total energy. If the initial energy is E0 and therefore
H(X,P ) = E0, the inverse change to the physical coordinates gives

H(x,p) =
p2

2m
+ V (x) = E0e

−γt, (12)

i.e., the energy is lost exponentially at a constant rate (γ), as expected from the physical
dissipative system described by Eq. (8). The dissipative model given by Eq. (10) is known
as the Caldirola-Kanai model [50, 51] and constitutes one of the former attempts to express (8)
in a Hamiltonian form.

In order to find the quantum analog of the Caldirola-Kanai model, we now make use of the
standard quantization procedure, and associate the operators X̂ and P̂ = −i~∂/∂X̂ with the
canonical variables X and P , respectively. Because of their canonicity, these operators satisfy
the usual commutation relation [X̂, P̂ ] = i~ —which does not hold for the “physical” operators,
[x̂, p̂] = i~e−γt. Accordingly, the quantum Caldirola-Kanai Hamiltonian arises by replacing X
and P in Eq. (10) by the corresponding operators,

Ĥ(X̂,P̂ ) = − ~2

2m
e−γt

∂2

∂X2
+ eγtV̂ (X̂), (13)

and the corresponding Schrödinger equation, in the physical variable x, reads as

i~
∂Ψ

∂t
= − ~2

2m
e−γt

∂2Ψ

∂x2
+ eγtV (x)Ψ. (14)
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Figure 2. Dissipative Bohmian trajectories for: (a) γ = 0.3ω0, (b) γ = 2ω0, and (c) γ = 4ω0,
with ω0 = 2π/τ0 ≈ 0.628 (τ0 = 10). To compare with, the frictionless Bohmian trajectories have
also been included in each panel (gray dashed lines). The initial positions have been distributed
according to the initial Gaussian probability density.

It is easy to show that the associated (dissipative) Bohmian trajectories obey the modified
guidance equation

ẋ =
J

ρ
=

1

m

∂S

∂x
e−γt. (15)

Note the similarity between this equation and the classical analog, ẋ = pe−γt/m.
For potential functions V (x) which are polynomials with a degree equal or smaller than two,

one can find analytical solutions for initial wave functions with the shape of a Gaussian wave
packet [49, 52]. Without entering details, just to illustrate the dissipative dynamics described by
Eq. (14), we are going to consider a harmonic oscillator. The dissipative Bohmian trajectories
for different values of the friction coefficient are displayed in Fig. 2. As it can be noticed, in
the physical coordinates not only there is a clear violation of the usual commutation relation,
which manifests in a vanishing dispersion of the wave packet, but the system approaches the
bottom part of the potential well, thus going down the zero-point energy. This is a pathological
behavior (in the physical variables) typical of the Caldirola-Kanai model, which is based on a
continuous dissipation of the system energy due to the lack of a proper quantization. The latter
only applies to the canonical variables X and P . A similar behavior can be found, for example,
when dealing with beables [53, 54]. The same correspondence can also be found if one considers
an initial wave-packet superposition inside the harmonic potential, as shown in Fig. 3.

In order to avoid such an inconvenience, other models have been proposed in the literature
as suitable quantum candidates of Eq. (8) [55–59]. In analogy to Brownian-type wave-function
models [60], these models use to include a nonlinear term, thus also making the corresponding
Schrödinger equation nonlinear. Of course, this nonlinear term is usually accompanied by a
stochastic term that accounts for the random fluctuations of the medium that give rise to
such a nonlinearity (just as in the Langevin equation for Brownian motion, for example). For
example, in Kostin’s model [61] a nonlinear term depending on the phase of the wave function
is considered, with the Schrödinger equation reading as

i~
∂Ψ

∂t
= − ~2

2m

∂Ψ

∂x2
+ VΨ + VRΨ + γ

(
S −

∫
ρSdx

)
Ψ, (16)

with S = (~/2i) ln(Ψ/Ψ∗) and where VR is a random potential. Here we have focused on this
model in particular because of the link that can be established between this model and Bohmian
mechanics precisely through S, as it will be seen below.

In the full dissipative case, where VR = 0, if we substitute the usual polar ansatz into Eq. (16)
and then proceed as in standard Bohmian mechanics, we reach the modified quantum Hamilton-
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Figure 3. Dissipative Bohmian trajectories for: (a) γ = 0.3ω0, (b) γ = 2ω0, and (c) γ = 4ω0,
with ω0 = 2π/τ0 ≈ 0.628 (τ0 = 10). To compare with, the frictionless Bohmian trajectories have
also been included in each panel (gray dashed lines). The initial positions have been distributed
according to the initial Gaussian probability density.

Jacobi equation
∂S

∂t
+

1

2m

(
∂S

∂x

)2

+ V +Q+ γS = 0, (17)

where Q denotes the quantum potential (see Sec. 2). Assuming that the Bohmian trajectories
are obtained from the usual equation of motion, p = mẋ = ∂S/∂x, and differentiating Eq. (17)
with respect to x, we reach

mẍ+mγẋ+
∂(V +Q)

∂x
= 0, (18)

where we have made use of the Lagrangian derivative

d

dt
=

∂

∂t
+ ẋ

∂

∂x
=

∂

∂t
+

1

m

(
∂S

∂x

)
∂

∂x
. (19)

Note that Eq. (18) has the same functional form as Eq. (8), except for the fact that it also includes
a purely quantum force (given in terms of the space derivative of the quantum potential). That
is, Bohmian mechanics shows a direct path to find the quantum analog of Eq. (8), consisting of
just including the quantum potential. Kostin’s model has been proven very useful to determine
energy bound states due to its convergence by dissipation [62].

4.2. “Photon” trajectories
Another field of interest concerning the applications of Bohmian mechanics is electromagnetism,
as mentioned above, where a time-independent trajectory approach can be readily developed
starting from Maxwell’s equations [37, 63]. Within this approach, where the time-dependence
is removed by averaging over the oscillating electromagnetic field, the trajectories describe the
flow of electromagnetic energy (analogous to the probability accounted for by the Bohmian
trajectories). As shown by Prosser [34], this is possible by directly considering Maxwell’s
equations defined by an electric field E(r) and a magnetic field H(r), the two key elements
necessary to define the corresponding streamlines are the time-averaged electromagnetic energy
density and Poynting vector (electromagnetic current density),

U(r) =
1

4
[ε0E(r) ·E∗(r) + µ0H(r) ·H∗(r)] . (20)

S(r) =
1

2
Re [E(r)×H∗(r)] , (21)
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respectively; E(r) and H(r) denote respectively the spatial part of the electric and magnetic
field vectors, which satisfy Maxwell’s equations and have been assumed to be harmonic, i.e.,

Ẽ(r) = E(r)e−iωt,

H̃(r) = H(r)e−iωt.
(22)

Since the electromagnetic energy density is transported through space in the form of the Poynting
vector, a local velocity field can be defined [64] in analogy to (7), which reads as

S(r) = U(r)v. (23)

The electromagnetic energy flow lines or “photon” paths are then obtained by integrating the
equation

dr

ds
=

1

c

S(r)

U(r)
(24)

along the arc-length coordinate s (which can be referred to a proper time τ = s/c, with c being
the speed of light). The analogy between light and massive particles becomes more apparent if
the spatial parts of the electric and magnetic fields are expressed in terms of a scalar function
Ψ that satisfies the Helmholtz equation and the corresponding boundary conditions [37, 63].

In order to show such an analogy, consider a monochromatic electromagnetic wave in vacuum
incident onto a plate with two slits. The plate is on the XY plane, at z = 0. For simplicity, it
is assumed that the fields are independent of the y coordinate. This assumption is well justified
if the slits are parallel to the y axis and their width along this axis is much larger than along
x. In such a case from Maxwell’s equations one obtains two independent sets of equations.
One involves the components Hx, Hz, and Ey of the electromagnetic field and is commonly
regarded as E-polarized. The other involves the components Ex, Ez, and Hy, and is known as
H-polarization. The electric and magnetic fields behind the slits can be expressed as [63]

E(r) = − iβ
k

∂Ψ

∂z
ex +

iβ

k

∂Ψ

∂x
ez + αΨey, (25)

H(r) =
iα

ωµ0

∂Ψ

∂z
ex −

iα

ωµ0

∂Ψ

∂x
ez +

kβeiϕ

ωµ0
Ψey. (26)

The scalar field Ψ at any z can be expressed as a Fresnel-Kirchhoff integral [65], which in general
has to be numerically integrated once the initial condition is established. In particular, if one
considers a grating with two Gaussian slits [66], the initial condition can be assumed to be a
coherent superposition of the two diffracted waves,

Ψ(x, 0) = ψ1(x, 0) + ψ2(x, 0), (27)

where

ψi(x, 0) =

(
1

2πσ2i

)1/4

e−(x−x0,i)2/4σ2
iW (x− x0,i, wi), (28)

with i = 1, 2. A window function, W (x,w), has been added to each wave packet in order to
provoke a truncation and, therefore, to analyze the eventual effects on the final interference
pattern. In this case, this function is such that it is one within the extension covered by the
corresponding slit (i.e., between −wi and wi), and zero everywhere else.

A series of electromagnetic energy flow lines or averaged “photon” trajectories are displayed in
Fig. 4 (upper panel). As in the previous example, the initial positions have also been distributed
according to the Gaussian weight. To compare with, the numerical values considered have been
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Figure 4. Lower panel: Electromagnetic energy streamlines or average “photon” trajectories
behind two Gaussian slits [66]. The numerical parameters used are [65]: σ1 = σ2 = 0.3 mm,
x0,1 = −x0,2 = 2.35 mm, and λ = 943 nm. The trajectories have been distributed according
to the corresponding initial Gaussian probability densities behind each slit. Upper panels:
Transverse momentum, kx/k, evaluated at the four distances reported in Ref. [21] (see red
dashed lines in the lower panel) for full Gaussian slits (red solid lines) and slits truncated at
wi = 1.9σi (blue dotted lines) and wi = 1.5σi (green dashed lines). To compare with, the
experimental data (black circles) are also displayed. In these four calculations, asymmetric
Gaussians were used, with parameters: σ1 = 0.307 mm, σ2 = 0.301 mm, x0,1 = 2.335 mm,
x0,2 = −2.355 mm, and λ = 943 nm.

chosen as in the experiment reported in Ref. [21]. Although the model is rather simple and makes
no explicit use of the concept of “weak measurement”, there is a good agreement between the
simulation and the trajectories inferred from the experimental data, which shows the suitability
of Maxwell’s equations to describe this type of experiments. This adequacy is also seen when
the transversal momentum obtained from the Poynting vector is compared to the corresponding
experimental data, as shown in the upper panels for four different distances from the two slits.
Notice that these two quantities are connected through the relation [67]

kx
k

=
Sx
S
, (29)

EmQM13: Emergent Quantum Mechanics 2013 IOP Publishing
Journal of Physics: Conference Series 504 (2014) 012028 doi:10.1088/1742-6596/504/1/012028

11



where Sx and S refer to the x-component and modulus of the Poynting vector, respectively. In
particular, in the four upper panels displayed in Fig. 4 the Gaussians have been considered to
be asymmetric in order to find a better fitting with the experimental data (black circles). It can
be seen that as the Gaussians are more severely truncated, the oscillations of kx/k undergo a
remarkable increase. This means a stronger action of the quantum potential between adjacent
interference fringes according to the usual Bohmian interpretation [36, 68].

5. Final remarks
In general, the position maintained with respect to Bohmian mechanics is that it constitutes
an alternative interpretation to quantum mechanics (or even an alternative theory). From
the above discussion, it is difficult to find arguments sustaining such claims —often used in a
pejorative sense to refute any work in this area. We have seen that Bohmian mechanics should
be rather regarded as an alternative and complementary representation of quantum mechanics,
particularly when we note that it is the direct translation of the latter into the language of the
theory of characteristics, which has nothing to do with hidden variables or ontological views.

In that sense, it is worth thinking for a while about the different representations that we
have in classical and quantum mechanics. For the former, we admit different formulations, each
one emphasizing a different physical aspect of the systems described. For example, Newton’s
formulation relies on the relationship between the motion displayed by objects and the external
forces that act on them. On the other hand, we also have Hamilton’s formulation, which is
based on the concept of energy conservation. This allows us to tackle physical problems in a
rather flexible way, choosing the formulation that better fits our needs, and at the same time to
understand the same phenomenon from different perspectives.

Similarly in quantum mechanics there are also different formulations or ways to tackle the
same problem, which are chosen according to their suitability —either analytical or numerical.
For example, Schrödinger’s formulation stresses the time-evolution of the system (through its
wave function) under the influence of a given Hamiltonian; any property of the system is
synthesized from its wave function either at a given time (probability densities) or at two
different times (correlation functions). With Heisenberg’s formulation, on the contrary, one
focuses on the evolution in time of the operators associated with observables and how they act
on a given (time-independent) system state. Half-way between both, the Dirac or interaction
representation is more convenient to analyze the dynamics of systems interacting with other
systems. Feynman’s path-integral representation, relying on the concept of classical action and
trajectory, is suitable in the treatment of large systems. Other representations, such as the
Wigner-Moyal or the Husimi ones, stress the role of the density matrix in phase space. All
these well-known examples are equivalent formulations of quantum mechanics, which provide a
different description of the same system. In the same way, Bohmian mechanics stresses the role
of the quantum phase, which has determining consequences for quantum systems even though
it is not an observable. Figure 1 summarizes this descriptive complementarity.

The trajectories that we obtain through Bohmian mechanics help us to visualize and
understand the physics underlying quantum systems and phenomena by monitoring the flow
of the probability. This appealing feature has been used in different contexts, not necessarily
connected to Bohmian mechanics or, in general, to quantum mechanics. Here, for example,
the dynamics of a dissipative system has been analyzed, making evident the pathologies of a
well-known model and how they can be avoided. In this sense, notice that at a practical level
the calculation of Bohmian trajectories is more convenient even if the Schrödinger equation has
to be solved in order to compute them. First, the analysis of the system dynamics in terms of
trajectories is simpler than in terms of probability densities, specially for two or more dimensions.
Second, if instead of probabilities, one considers expectation values, the trajectories are still very
appropriate, because the former only provide us with averaged information at every time, while
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the latter allow us to visualize the dynamics of each particular part of the quantum state.
Furthermore, the same concepts and tools can be extended to other areas of physics, as we

have seen in the example of the “photon” trajectories. Although the differential equations are
different and the fields propagated have a different physical meaning, the underlying ideas are
exactly the same. This is actually the way how the recent experimental realization of Young’s
two slit experiment has been explained [21]. Among the many different ways that one could
devise to join the transversal momentum function at different distances from the two slits,
Bohmian mechanics provides a very clear prescription of how to do it, without incurring any
kind of approximation or including any external element to quantum mechanics.

In that latter regard, I shall finish here with the following consideration. In order to explain
his outcomes from the two-slit experiment, Young used the so-called Huygens’ construction.
Accordingly, the position of a wavefront at a given time can be obtained by considering a
wavefront at a previous time. Each point on this second wavefront is assumed to be a source of
secondary waves, whose interference gives rise to the wavefront at the later time. The direction
of travel of these wavefronts is what we call a ray. In the case of plane waves, the wavefronts are
perpendicular to rays; in the case of interference, the shape of the wavefronts varies from point
to point, that making intractable a ray description . . . from an analytical viewpoint! Should
Young have had a computer, he would have been able to evaluate the rays locally, at each point
. . . and would have discovered Bohmian mechanics more than 100 years earlier, for Bohmian
trajectories constitute the convoluted generalization of the concept of ray. In other words, they
are the characteristics that correspond to surfaces describing waves.
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