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Classical probability model for Bell inequality
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E-mail: Andrei.Khrennikov@lnu.se

Abstract. We show that by taking into account randomness of realization of experimental
contexts it is possible to construct common Kolmogorov space for data collected for these
contexts, although they can be incompatible. We call such a construction “Kolmogorovization”
of contextuality. This construction of common probability space is applied to Bell’s inequality.
It is well known that its violation is a consequence of collecting statistical data in a few
incompatible experiments. In experiments performed in quantum optics contexts are determined
by selections of pairs of angles (θi, θ

′
j) fixing orientations of polarization beam splitters. Opposite

to the common opinion, we show that statistical data corresponding to measurements of
polarizations of photons in the singlet state, e.g., in the form of correlations, can be described
in the classical probabilistic framework. The crucial point is that in constructing the common
probability space one has to take into account not only randomness of the source (as Bell did),
but also randomness of context-realizations (in particular, realizations of pairs of angles (θi, θ

′
j)).

One may (but need not) say that randomness of “free will” has to be accounted for.

1. Introduction
The role of Bell’s inequality [1] for quantum foundations and nowadays for quantum technologies
was discussed in hundreds of papers, see, e.g., [2] for the extended bibliography. Recently
crucial experimental tests closing the fair sampling loophole were performed [3]–[4]. Leading
experimenters promise that the final (clean and loophole-free) test will be performed in a few
years, may be even next year. Thus it seems that the “Bell inequality epic” [1]–[35] is near the
end. Nevertheless, the probabilistic structure of the Bell argument has not yet been completely
clarified. And the present paper is a step towards such clarification. In physics, violation of
Bell’s inequality is typically coupled to notions of realism, locality, and free will [1], [3]–[11]. In
mathematically oriented literature, violation of Bell’s inequality is considered as exhibition of
nonclassicality of quantum probability - impossibility to use the Kolmogorov model of probability
theory [36]. There can be found numerous publications on this topic, see, e.g., [2], [12]–[14], [17]–
[30], [31]–[35]. In particular, in a series of works, e.g., [2], [17], [15], [33], the author of this paper
presented the viewpoint that violation of Bell’s inequality is a consequence of combining in
one inequality of statistical data collected for a few incompatible experimental contexts. (In
experiments performed in quantum optics contexts are determined by selections of pairs of
angles (θi, θ

′
j) fixing orientations of polarization beam splitters.) Data for each context can be

described by the classical probability space, Kolmogorov space, but there is no common space
for this data [2]. This viewpoint was strongly supported by the famous theorem of A. Fine [11]
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coupling Bell’s inequality with existence of the joint probability distribution for all measured
random variables.

What would N. Bohr say about such a viewpoint? He would definitely, cf. [37], say that there
is no reason for violation of classicality even if data were collected for incompatible contexts.
For him, measurement apparatus is a classical device and even if one collects outputs of a few
classical devices, there is no reason to expect a violation of laws of classical probability. In
this note we confirm such a position. We show that by taking into account the randomness of
realization of experimental contexts it is possible to construct the common Kolmogorov space for
data collected for these contexts, although they can be incompatible. We call such a construction
“Kolmogorovization” of contextuality. This construction of common probability space is applied
to Bell’s inequality.

Opposite to the common opinion, we show that statistical data corresponding to measurements
of polarizations of photons in the singlet state, e.g., in the form of correlations, can be described
in the classical probabilistic framework. The crucial point is that in constructing the common
probability space one has to take into account not only randomness of the source (as Bell
did), but also randomness of context-realizations; in particular, realizations of the pairs of the
angles (θi, θ

′
j) determining orientations of polarization beam splitters (PBSs). Roughly speaking

randomness of (pseudo)-random generators controlling selections of orientations of PBSs has to
be added to randomness of the source. Although everybody recognizes that randomness of these
generators plays an important role in the Bell framework, its presence is ignored in theoretical
constructions representing the EPR-Bohm-Bell correlations. These generators are viewed as
some “technicalities” which are interesting for experimenters, but not theoreticians. Recently
the author started to pay serious attention to various experimental technicalities, to embed them
into theoretical models, to lift them to the level of fundamental studies, e.g., [15]. The present
paper can be considered as a further step in this direction.

In the Kolmogorov model constructed in this paper quantum probabilities and correlations are
represented as conditional probabilities and correlations (under condition of fixed experimental
settings). Such conditional probabilities and correlations can violate Bell’s inequality, although
unconditional ones have to satisfy it. We remark that, as was shown in numerous experiments,
theoretical quantum probabilities and correlations coincide (of course, approximately) with
probabilities and correlations found by experimenters for the fixed experimental settings, e.g.,
the angles (θi, θ

′
j) in test of Bell type inequalities. Therefore our classical probabilistic model

represents experimental probabilities and correlations as well.
Our model is local. However, it is not objective (realistic) in the sense of Einstein, Podolsky,

Rosen and Bell: the values of observables are not determined by the state of a system emitted
by a source, by, so to say, a hidden variable λ. However, from Bohr’s viewpoint one cannot
expect such type of objectivity, since it is defined solely in terms of the states of systems
emitted by a source. And our model is objective in a more general sense (which might satisfy
Bohr): the hidden variable λ and the random parameters in random generators selecting the
experimental settings determine the values of observables (e.g., spin or polarization projections).
We remark that even in classical physics randomness of measurement devices is routinely taken
into account and if statistical data is collected by using a few different devices is has to be
weighted. Kolmogorovization of Bell’s argument is reduced to such a standard procedure. One
may (but need not) say that randomness of “free will” has to be accounted for, but we postpone
the discussion on this topic, see section 4.

The main problem handled in this note is the following1. There are a few experimental

1 This note is based on the work [38]. Unfortunately, the latter suffered of a few presentational problems. First of
them is that there were present two totally different classical Kolmogorov models for violation of Bell’s inequality,
one due to D. Avis and another due to the author (and it is reconsidered in the present note). And author’s
model was vaguely presented by mixing the von Mises frequency approach to probability (which is typically
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contexts and statistical data (of any origin) collected for these contexts. Is it possible to construct
a common probability space representing these data? We show that the answer is always positive!

This result changes the viewpoint on the role of quantum probabilistic calculus. As was
mentioned, the common viewpoint is that we use quantum probabilistic rules, because classical
probabilistic rules are violated, see, e.g., Feynman [39] and the author [40], [2]. (Besides violation
of Bell’s inequality, there is typically stressed that the formula of total probability is violated by
statistical data collected in the two slit and other interference experiments.) In this note we show
that such an “impossibility viewpoint” has to be changed. In the light of Kolmogorovization it
is clear that the calculus of quantum probabilities is just a calculus of conditional probabilities
defined in the classical probabilistic framework. It is not surprising that conditional probabilities,
although generated in the common probability space, but with respect to different conditions,
follow rules which are different from the rules which were derived for unconditional probabilities,
such as, e.g., Bell type inequalities.

2. CHSH-inequality
We recall the rigorous mathematical formulation of the CHSH inequality:

Theorem 1. Let A(i)(ω) and B(i)(ω), i = 1, 2, be random variables taking values in [−1, 1]
and defined on a single probability space P. Then the following inequality holds:

| < A(1), B(1) > + < A(1), B(2) > + < A(2), B(1) > − < A(2), B(2) > | ≤ 2. (1)

Correlation is defined as it is in classical probability theory:

< A(i), B(j) >=

∫
Ω
A(i)(ω)B(j)(ω)dP(ω).

Experimental tests of the CHSH-inequality are based on the following methodology. One
should put statistical data collected for four pairs of PBSs settings:

θ11 = (θ1, θ
′
1), θ12 = (θ1, θ

′
2), θ21 = (θ2, θ

′
1), θ22 = (θ2, θ

′
2),

into it. Here θ = θ1, θ2 and θ′ = θ′1, θ
′
2 are selections of angles for orientations of respective

PBSs.
Following Bell, the selection of the angle θi determines the random variable

aθi(ω) = ±1.

There are two detectors coupled to the PBS with the θ-orientation: “up-spin” (or “up-
polarization”) detector and “down-spin” (or “down-polarization”) detector. A click of the up-
detector assigns to the random variable aθ(ω) the value +1 and a click of the down-detector
assigns to it the value -1. In the same way selection of the angle θ′ determines

bθ′i(ω) = ±1.

considered as mathematically non-rigorous) and the Kolmogorov measure-theoretic approach. This mixing of
two approaches made the impression that the essence of the model is in usage of the von Mises approach. In
the present note we proceed solely in the Kolmogorov framework. Another problem of [38] is that the upper
bound for the CHSH-expression consisting of contextual correlations was 8 and not 4, i.e., two times more than
the reasonably acceptable for four correlations (even conditional) of random variables bounded by one. In this
note we show that this was an artifact of too straightforward usage of the CHSH-inequality for unconditional
classical correlations. This inequality does not provide the best bound for these correlations. We show that in
our Kolmorovization-model the CHSH-expression for unconditional correlations can be bounded by 1, instead of
generally given 2. By taking into account randomness of realization of 4 experimental contexts we obtain the
natural bound 4 for conditional correlations.

EmQM13: Emergent Quantum Mechanics 2013 IOP Publishing
Journal of Physics: Conference Series 504 (2014) 012019 doi:10.1088/1742-6596/504/1/012019

3



If one assumes that these observables can be represented as random variables on common
Kolmogorov probability space, then their correlations have to satisfy the CHSH-inequality
(1). However, the correlations calculated with the aid of the quantum formalism as well
as experimental correlations violate this inequality. Therefore the above assumption about
Kolmogorovness of data has to be rejected, see A. Fine [11], see A. Khrennikov [17], [2] for
discussions. In this paper we do not question this conclusion. Our point is that from the classical
probabilistic viewpoint there is no reason to assume that these correlations can be reproduced
in common probability space. However, they can be embedded in “large Kolmogorov space” as
conditional correlations.

2.1. Random experiment taking into account random choice of settings
a) There is a source of entangled photons.

b) There are two pairs of PBSs with the corresponding pairs of detectors. PBSs in pairs are
oriented with angles numbered i = 1, 2 and j = 1, 2. The pairs of PBSs (with their detectors)
are located in spatially separated labs, say Lab1 (PBSs i = 1, 2) and Lab2 (PBSs j = 1, 2).
The source is connected (e.g., by optical fibers) to the Labs.

c) In each lab there is a distribution device; at each instance of time2: t = 0, τ, 2τ, . . . , it opens
the gate to only one of the two channels going to the corresponding PBSs. For simplicity,
we suppose that in each Lab channels are opened with equal probabilities

P(i) = P(j) = 1/2.

Now in each of labs we define two observables corresponding to PBSs (with their detectors):

A1. A(i)(ω) = ±1, i = 1, 2 if in Lab1 the i-th channel is open and the corresponding (up or
down) detector coupled to ith PBS fires;

A0. A(i)(ω) = 0 if in Lab1 the i-th channel is blocked.

B1. B(j)(ω) = ±1, j = 1, 2 if in Lab2 the j-th channel is open and the corresponding (up or
down) detector coupled to jth PBS fires;

B0. B(j)(ω) = 0 if in Lab2 the j-th channel is blocked.

We remark that in the present experiments testing the CHSH-inequality experimenters do
not use four PBSs, but only two PBSs (one at each side); not two pairs of detectors at each side,
but just one pair. The random choice of orientations θ = θ1, θ2 (on one side) and θ′ = θ′1, θ

′
2 (on

another side) is modeled with the aid of additional devices preceding the corresponding PBSs.
(Pseudo)-random generators specify parameters in these devices corresponding to selection of
two different orientations for each of two PBSs. The main reason for the use of this scheme
is that it is simpler in realization and it is essentially cheaper. The latter is very important,
since photo-detectors with approximately 100% efficiency are extremely expensive. There are
no doubts that everybody would agree that the two experimental schemes under discussion
represent the same physical situation. However, the scheme with four PBSs is more natural
from the probabilistic viewpoint. At each side there are two pairs of detectors determining
two random variables. Roughly speaking there are two observers at each side, Alice1, Alice2
and Bob1, Bob2, each of them monitors her/his pair of detectors and, for each emitted system,
she/he has to assign some value, if non of the detectors clicks she/he assigns 0. (We consider
the ideal situation without losses).

2 Timing can be experimentally realized with the aid of the cell method used in [4].
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2.2. Kolmogorovization of incompatible statistical data
We now construct a proper Kolmogorov probability space for the EPR-Bohm-Bell experiment.

This is a general construction for combining of probabilities produced by a few incompatible
experiments.

For the fixed pair of orientations (θi, θ
′
j), there are given probabilities pij(ε, ε

′), ε, ε′ = ±1, to
get the values (ε, ε′). These are either experimental probabilities (frequencies) or probabilities
produced by the mathematical formalism of QM. For the singlet state and measurements of
polarization, we have:

pij(ε, ε) =
1

2
cos2

θi − θ′j
2

, pij(ε,−ε) =
1

2
sin2

θi − θ′j
2

. (2)

However, this special form of probabilities is not important for us. Our construction of
unifying Kolmogorov probability space works well for any collection of numbers pij(ε, ε

′) such
that for any pair (i, j) :

0 ≤ pij(ε, ε′) ≤ 1,
∑
ε,ε′

pij(ε, ε
′) = 1.

Let us now consider the set of points Ω :

ω = (ε1, 0, ε
′
1, 0), (ε1, 0, 0, ε

′
2), (0, ε2, ε

′
1, 0), (0, ε2, 0, ε

′
2),

where ε = ±1, ε′ = ±1. These points correspond to the following events: e.g., (ε1, 0, ε
′
1, 0) means:

at the left hand side PBS N 1 is coupled and PBS N 2 is uncoupled and the same is at the right
hand side, the result of measurement at the left hand side after PBS N 1 is given by ε1 and at
the right hand side by ε′1.

We define the following probability measure on Ω :

P(ε1, 0, ε
′
1, 0) =

1

4
p11(ε1, ε

′
1),P(ε1, 0, 0, ε

′
2) =

1

4
p12(ε1, ε

′
2)

P(0, ε2, ε
′
1, 0) =

1

4
p21(ε2, ε

′
1),P(0, ε2, 0, ε

′
2) =

1

4
p22(ε2, ε

′
2).

We now define random variables A(i)(ω), B(j)(ω) :

A(1)(ε1, 0, ε
′
1, 0) = A(1)(ε1, 0, 0, ε

′
2) = ε1, A

(2)(0, ε2, ε
′
1, 0) = A(2)(0, ε2, 0, ε

′
2) = ε2;

B(1)(ε1, 0, ε
′
1, 0) = B(1)(0, ε2, ε

′
1, 0) = ε′1, B

(2)(ε1, 0, 0, ε
′
2) = B(2)(0, ε2, 0, ε

′
2) = ε′2,

and we put these variables equal to zero in other points; for example, A(1)(0, ε2, ε
′
1, 0) =

A(1)(0, ε2, 0, ε
′
2) = 0. Thus if the channel going to PBS N1 at Alice1/Alice2 side is closed, then,

since none of the detectors following it fires, Alice1 assigns the value 0 to her observable A(1).
These random variables are local in the sense that their values do not depend on experimental

context and the results of measurements on the opposite side; for example, A(1)(ω) depends only
on the first coordinate of ω = (ω1, ω2, ω3, ω4).

We find two dimensional probability distributions; the nonzero ones are given by

P(ω ∈ Ω : A(1)(ω) = ε1, B
(1)(ω) = ε′1) = P(ε1, 0, ε

′
1, 0) =

1

4
p11(ε1, ε

′
1), . . . ,

P(ω ∈ Ω : A(2)(ω) = ε2, B
(2)(ω) = ε′2) =

1

4
p22(ε2, ε

′
2).

Then, e.g.,
P(ω ∈ Ω : A(1)(ω) = ε1, A

(2)(ω) = ε2) = P(∅) = 0.
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We also consider the random variables which monitor selection of channels: ηa = i, i = 1, 2 if
the channel to the ith PBSs on the Alice1/Alice2 side is open and ηb = j, j = 1, 2 if the channel
to the jth PBSs on the Bob1/Bob2 side is open. Thus

ηa(ε1, 0, 0, ε
′
2) = 1, ηa(ε1, 0, ε

′
1, 0) = 1, ηa(0, ε2, 0, ε

′
2) = 2, ηa(0, ε2, ε

′
1, 0) = 2,

ηb(ε1, 0, ε
′
1, 0) = 1, ηb(0, ε2, ε

′
1, 0) == 1, ηb(ε1, 0, 0, ε

′
2) = 2, η(0, ε2, 0, ε

′
2) = 2.

Here
P(ω ∈ Ω : ηa(ω) = 1) =

∑
ε1,ε′2

P(ε1, 0, 0, ε
′
2) +

∑
ε1,ε′1

P(ε1, 0, ε
′
1, 0)

= 1/4
[ ∑
ε1,ε′2

p12(ε1, ε
′
2) +

∑
ε1,ε′1

p11(ε1, ε
′
1)
]

= 1/2.

In the same way P(ω ∈ Ω : ηa(ω) = 2) = 1/2;P(ω ∈ Ω : ηb(ω) = 1) = P(ω ∈ Ω : ηb(ω) = 2) =
1/2. We remark that the random variables ηa and ηb are independent, e.g.,

P(ω ∈ Ω : ηa(ω) = 1, ηb(ω) = 1) = P(ε1, 0, ε
′
1, 0) = 1/4

∑
ε1,ε′1

p11(ε1, ε
′
1) = 1/4

= P(ω ∈ Ω : ηa(ω) = 1)P(ω ∈ Ω : ηb(ω) = 1) = 1/4.

In the same way

P(ω ∈ Ω : ηa(ω) = 1, ηb(ω) = 2) = P(ε1, 0, 0, ε
′
2)) = 1/4

∑
ε1,ε′2

p12(ε1, ε
′
1) = 1/4

= P(ω ∈ Ω : ηa(ω) = 1)P(ω ∈ Ω : ηb(ω) = 2) = 1/4

and so on. These random variables are local in the sense that their values do not depend on
experimental context and the results of measurements on the opposite side; for example, ηa(ω)
depends only on the first coordinate of ω = (ω1, ω2, ω3, ω4).

We now find conditional probabilities for the results of joint measurements of observables
A(i)(ω) and B(j)(ω), i, j = 1, 2, conditioned on opening of channels going to corresponding
PBSs. The definition of the classical (Kolmogorov, 1933) conditional probability is based on
Bayes formula, e.g.,

P(ω ∈ Ω : A(1)(ω) = ε1, B
(1)(ω) = ε′2|ηa = 1, ηb = 1)

=
P(A(1)(ω) = ε1, B

(1)(ω) = ε′2, ηa(ω) = 1, ηb(ω) = 1)

P(ω ∈ Ω : ηa(ω) = 1, ηb(ω) = 1)

=
P(ε1, 0, ε

′
1, 0)

1/4
= p11(ε1, ε

′
1).

In general, we obtain:

P(ω ∈ Ω : A(i)(ω) = εi, B
(j)(ω) = ε′j |ηa = i, ηb = j) = pij(εi, ε

′
j).

In particular, if initially the weights pij(εi, ε
′
j) were calculated with the aid of the rules of

quantum mechanics, for the singlet state and polarization observables, i.e., they have the
meaning of quantum probabilities, then the classical conditional probabilities coincide with
these quantum probabilities. In this way all quantum probabilities can be represented classically.
However, they have to be treated as conditional probabilities. In principle, such a viewpoint
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on quantum probabilities is well established, see, e.g., [34], [2]. The novel contribution is that
concrete classical probabilistic construction for embedding of quantum probabilities into classical
Kolmogorov model was presented.

To complete the picture of conditioning, we also present probabilities for observations for
closed channels, e.g.,

P(ω ∈ Ω : A(1)(ω) = ε1, B
(1)(ω) = ε′2|ηa = 2, ηb = 1) =

=
P(A(1)(ω) = ε1, B

(1)(ω) = ε′2, ηa(ω) = 2, ηb(ω) = 1

P(ω ∈ Ω : ηa(ω) = 2, ηb(ω) = 1)

=
P(∅)
1/4

= 0.

3. Classical conditional probability viewpoint on violation of the CHSH-inequality
Since the CHSH-inequality is an inequality for correlations, we find them. We are interested
in two types of correlations, so to say, absolute, E(A(i)B(j)), and conditional, E(A(i)B(j)|ηa =
i, ηb = j). We have:

E(A(i)B(j)) =
∑
εi,ε′i

εiε
′
jP(A(i) = εi, B

(j) = εj) = (1/4)
∑
εi,ε′i

εiε
′
jpij(εi, ε

′
j)

and
E(A(i)B(j)|ηa = i, ηb = j) =

∑
εi,ε′i

εiε
′
jP(A(i) = εi, B

(j) = εj |ηa = i, ηb = j)

=
∑
εi,ε′i

εiε
′
jpij(εi, ε

′
j).

Suppose that the weights pij are selected as quantum probabilities for the singlet state, denote
the corresponding correlations Cij , then

E(A(i)B(j)|ηa = i, ηb = j) = Cij

and
E(A(i)B(j)) = Cij/4.

The classical correlations satisfy to conditions of Theorem 1 and, hence, to the CHSH-inequality,
i.e., the conditional correlations satisfy to the inequality:

|C11 + C12 + C21 − C22| ≤ 8. (3)

Since the conditional correlations coincide with the quantum correlations, we obtain an
inequality which has to be satisfied by the quantum correlations. However, in the right-hand
side there is not 2 as in the CHSH, but 8 and, hence, no problem arises.

Roughly speaking the bound of 8 is too high to make any meaningful constraint on
correlations. Thus, in this situation the CHSH-inequality gives too rough an estimate, since
it is clear that even conditional correlations of random variables with values {−1, 0,+1} are
bounded by 1. Thus the worst straightforward estimate has to be

|C11 + C12 + C21 − C22| ≤ 4. (4)

We now go another way around and from the inequality (4) for conditional correlations we obtain
an inequality for unconditional (“absolute”) correlations:

|E(A(1)B(1)) + E(A(1)B(2)) + E(A(2)B(1))− E(A(2)B(2))| ≤ 1. (5)
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4. Conclusion
We showed that one can easily violate the CHSH-inequality in the classical probabilistic
framework (the Kolmogorov model [36]).

We emphasize that a violation of the CHSH-inequality for quantum correlations represented
as classical conditional correlations is not surprising. In our approach the main problem is to
explain Tsirelson bound.

We repeat our interpretation of the obtained result. Our model is local. It seems that
“nonlocality” is an artificial issue without direct relation to violation of Bell’s type inequalities.
However, our model is not realistic in the sense of naive realism of Einstein, Podolsky, Rosen,
and Bell, i.e., the measured values cannot be predetermined on the basis of the state of a system.
Nevertheless, a kind of contextual realism (of Bohr’s type) is preserved: by taking into account
not only the state of a system, but also randomness of (pseudo)-random generators selecting
orientations of PBSs, it is possible to violate the CHSH-inequality.

Appendix: Taking into account free will?
Recently, the so-called free will problem became an important topic in quantum foundational
discussions. In particular, the recent spike of activity was generated by ’t Hooft’s position that
quantum mechanics can be consistently explained by using the totally deterministic picture of
nature [41]. Of course, anybody having elementary education in cognitive science and philosophy
would consider the “free will” discussions in quantum foundations as very primitive, cf. with
[42]. They have practically no relation to such discussions in cognitive science and philosophy.
Therefore one may, in principle, ignore usage of this misleading terminology and just say that
in the Bell type experiments randomness of a source of entangled systems is combined with
random selection of experimental settings, e.g., in the form of angles, orientations of PBSs. The
latter is realized with the aid of (pseudo)-random generators. Of course, experimenter has the
freedom of choice of these random generators (as well as she has also the freedom to do or
not the experiment at all). However, after generators were selected randomness involved in the
Bell experiment (in fact, a few experiments) became of purely physical nature, i.e., the mental
element is totally excluded. Nevertheless, one may argue that an experimenter can in principle
interrupt the production of random numbers by changing at the arbitrary instant of time the
parameters of random generators and here her free will again will play a role. In principle,
we can accept this position and say that our model includes the mental randomness produced
by brain’s functioning. However, if we consider the brain as a physical system whose activity
is based on spikes produced by neurons (or/and electromagnetic fields generated in the brain),
then we again obtain the pure physical account of randomness in the Bell type experiments. Free
will would play an exceptional role only if one accepts that human consciousness is not reduced
to physical processes in the brain. Such a position is still valuable, e.g., [43]. By accepting it we
would agree that Kolmogorovization is successful only as the result of accounting for combined
physical-mental randomness.

G. ’t Hooft rejects the existence of free will. We mention that his position is close to the
position of the majority of cognitive scientists and philosophers working on the problem of free
will [42]. The common opinion is that free will is one of the traces of the God-based picture
of the world. The brain is a sort of deterministic device (which, of course, contains various
noisy signals) and all acts of free will are dynamically predetermined by brain’s state in previous
instances of time. We state again that our model need not be based on such a position. We are
fine by assuming the existence of a nonphysical pure mental elements or even God, in any event
the classical probability model for Bell’s experiment is well defined.
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