
This content has been downloaded from IOPscience. Please scroll down to see the full text.

Download details:

IP Address: 91.64.94.218

This content was downloaded on 09/12/2014 at 11:37

Please note that terms and conditions apply.

Spin and charge from space and time

View the table of contents for this issue, or go to the journal homepage for more

2014 J. Phys.: Conf. Ser. 504 012010

(http://iopscience.iop.org/1742-6596/504/1/012010)

Home Search Collections Journals About Contact us My IOPscience

iopscience.iop.org/page/terms
http://iopscience.iop.org/1742-6596/504/1
http://iopscience.iop.org/1742-6596
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


Spin and charge from space and time

Manfried Faber
Institute for Atomic and Subatomic Physics, Vienna University of Technology, Operngasse 9,
A-1040 Wien, Austria

E-mail: faber@kph.tuwien.ac.at

Abstract. We follow the idea that particles are topological solitons, characterised by
topological quantum numbers determining charge and spin. To describe such particles and
their spin we use the three rotational degrees of freedom of local spatial dreibeins. Orbiting
particles contribute by internal rotation to the total angular momentum. The mass of these
particles is given by their field energy only.

1. Introduction
A pendulum model as depicted in Fig. 1 obeys a discretised version of the Sine–Gordon model for
the rotational angle ϑ, a bosonic field in one time and and one space dimension, 1+1D [1]. Besides
wave-like excitations this interesting model has stable localised excitations, kink solutions,
solitons, behaving like particles. Their mass is field energy only. The wave-velocity c in the
mechanical model is of the order of 1m/s. The Sine-Gordon model is a relativistic model.
Therefore, solitons moving with velocity v are Lorentz contracted, see Fig. 1b, and their mass
increases with the well–known γ factor, γ = 1/

√
1− v2/c2, m(v) = γm(0).

(a) (b)

Figure 1. A pendulum model obeying a discretised version of the Sine–Gordon model. A soliton
at rest (a) has larger size than a moving soliton (b) which is Lorentz contracted. Mechanical
model by Peter Pataki, photos by Gerald Pechoc.

There are kinks and antikinks, right-handed and left-handed solitons where the bosonic field
ϑ varies from 0 to ±2π. Two–soliton configurations are time dependent since equal “charges”
repel and opposite charges attract each other. Despite the fact that solitons have a finite size, in
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collisions they behave point-like. The corresponding time-depend two-soliton solutions are well
known [1]

ϑ(x, t) = 4 atanβ sinh(γx)
cosh(βγt) . (1)

In Fig. 2 such solutions are depicted for some values of β = v/c , for t = 0, the time of shortest
approach. Towards β = 1 the common profile gets steeper and steeper and converges to size
zero, a step function.
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Figure 2. Field of two colliding solitons at t = 0, the time of shortest approach. For large
values of β the two solitons are not really distinguishable. Approaching β = 1 the common
profile gets arbitrary steep, closer and closer to a step function.

A generalisation of the 1+1D Sine–Gordon model to 3+1D was suggested in ref. [2], the
model of topological fermions (MTF). There the bosonic variable ϑ of the Sine–Gordon model
is generalised to three Euler angles, to an SO(3) field. In this article we interpret this field of
rotational matrices as orientations of local dreibeins in space which may rotate in time. As in
the Sine–Gordon model the MTF has stable topological excitations and mass is field energy.
Despite the fact that these solitons are extended, in high energy collisions they are compressed
to nearly point-like particles. Charge and spin are topological quantum numbers.

Let us recall the most important properties of charge and spin. Charges feel Coulomb and
Lorentz forces. Since Faraday’s laws of electrolysis, J. J. Thomsons cathode ray experiments in
1897 and Millikan’s oil drop experiments in 1909 we know that charge is quantised in units of
the elementary electric charge e0 = 1.602 · 10−19 C. Maxwell’s electrodynamics and quantum
mechanics give no explanation for this quantisation of electric charge.

There is no classical analogon of spin. From quantum mechanics we know that electrons
have two spin-states, usually indicated as spin up and spin down. The spin is described by the
SU(2) group, like the isospin. Whereas the isospin is an internal degree of freedom the spin has
a relation to our 3–dimensional space: the spin s contributes like the orbital angular momentum
l to the angular momentum j of particles, j = l + s.

From special relativity we know that there is no absolute space and space and time are
related. Gravitation theory teaches us that space–time is not rigid, it is deformable by matter
and energy density. The length scales of space–time depend on the position, they are encoded
in the metric tensor gµν in gravitational theory and described by local translations in Poincarè
gauge theory.
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2. The model
Now we follow the idea that charge is a property of space, a space which is Minkowskian at
macroscopic distances and has rotational dislocations at microscopic distances as schematically
shown in Fig. 3. We will show that dislocations which are described by a dreibein (triade)
rotating in space by 2π with an appropriate Lagrangian is a nice model to describe elementary
charges.

1m

→

Figure 3. Schematic picture of space which behaves Minkowskian at macroscopic distances
and is perturbed by dislocations at microscopic distances.

2.1. Degrees of freedom
The only degrees of freedom of this model are the above mentioned three rotational angles of
spatial dreibeins (triades). The earliest description of rotations is due to Rodrigues (1840) by
unit quaternions [3]

Q = q0 + q1i + q2j + q3k : i2 = j2 = k2 = ijk = −1, q2
0 + ~q2 = 1, ~q = (q1, q2, q3). (2)

and was reinvented by Hamilton (1843). Today it is more common to use the group SO(3) or its
double covering group SU(2) which is isomorphic to S3, the sphere in 4D. We make a transition
from the three imaginary quaternionic units to Pauli matrices

(i, j,k) = −i~σ, xµ = (ct, r), q0 = cosα, ~q = ~n sinα, ~n2 = 1, (3)

and describe the dreibein field by an SU(2) field

Q(x) = cosα(x)− i~σ~n(x) sinα(x) = e−iα(x)~σ~n(x). (4)

Models with such degrees of freedom are usually called non-linear sigma models. We have to
keep in mind that due to the double covering, the SO(3) field configuration corresponding to
±Q(x) are identical.

2.2. Geometry of S 3

By the SU(2) field Q(x), curves in space-time, parametrised by s or t: xµ(s), xµ(t) are mapped
to SU(2) and its parameter space, the sphere S3, and reflect its geometry. To every point of
such curves we can attribute a vector field, the connection one-form,

(∂sQ)Q† = −i~σ~Γs (5)
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vectors with values in the tangential space of S3. With a few lines one can see that in the
parametrisation (4) the three-component vector ~Γs reads

~Γs = ∂sα~n+ sinα cosα∂s~n+ sin2 α~n× ∂s~n. (6)
The arrows are used to avoid too many indices and indicate the vector character in the tangential
space.

Further we can attribute to every area in space-time, e.g. dxdy, an area on S3 and get an
area density, a connection two-form or curvature by

~Rµν = ~Γµ × ~Γν , (7)
as schematically shown in Fig. 4. Due to the equality of mixed partials, applied to Eq. (5), we

u0

Gxy
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dx
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z

y

x

R3

Figure 4. Schematic picture of maps of points, line and area elements from Minkowski space
to S3 : dx ∧ dy 7→ ~Γx × ~Γydxdy

get the Maurer-Cartan structural equation

~Γµ × ~Γν = 1
2[∂µ~Γν − ∂ν~Γµ] (8)

leading to the well-known curvature expression
~Rµν = ∂µ~Γν − ∂ν~Γµ − ~Γµ × ~Γν , (9)

which is covariant against basis rotations.

2.3. Relate geometry to physics
Defining the field strength tensor we start to relate the geometry to physics. With units
appropriate to get Gauß’s law for the elementary electric charge e0 the dual field strength
tensor reads

? ~Fµν = e0
4πε0

~Rµν . (10)

Electric fields are described by spatial components of the curvature tensor and magnetic fields
by space-time components. The arrow in ? ~Fµν indicates that this model has three contributions
for every field strength component. Like in QCD we call these internal components “color”.
Correspondingly we can introduce a dual vector field in appropriate units

~Cµ = − e0
4πε0c

~Γµ. (11)
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2.4. Lagrangian
In relativistic field theories the most effective method to define the dynamics is by defining a
Lagrangian. Our aim is to describe charges and their interaction with the electro-magnetic field.
There is a most successful theory for this aim and this is Maxwell’s electrodynamics. But it
describes charges and their fields by different quantities, by fermion fields ψ(x) and by gauge
fields Aµ(x). From the successes of the Sine-Gordon model we get the idea to describe charges
and their fields on the same footing, by a single field Q(x). We aim to investigate how far we
can get with this idea. We expect a non-linear theory. Maxwell’s electrodynamics should be a
very clever linearisation of this model by the above mentioned separation of charges and field.

From the success of gauge field theories we expect a Lagrangian quadratic in the field
strength tensor. From the comparison with the Sine-Gordon model we know that stable solitonic
configurations of finite energy can only be obtained with two competing contributions to the
action, one which tries to smooth solitons and one shrinking solitons. Extended solitons, reacting
at large energies like point-like particles need to be regular solutions without any substructure.
Such a field configuration symmetric in three-dimensional space is a configuration of hedge-hog
type. It should be convenient for point-like charges.

The only known possibility to get non-trivial stable field configurations with long-range
interactions is by the Lagrangian

L = Le −Hp = −αf~c4π

(1
4
~Rµν ~R

µν + Λ
)
,

αf~c
4π

1
4
~Rµν ~R

µν = − 1
4µ0

~Fµν ~F
µν . (12)

The prefactor αf~c
4π follows from the expression (10) for the field strength tensor, it is necessary

to get the dimension of an action density in the International System of Units (SI). The term
quadratic in the field strength is a kinetic term describing in electrodynamics the dynamics of
the photon fields. It agrees with the Skyrme term of the Skyrme model [4]. It contains four
derivatives of the soliton field Q(x), maximally two of them are time derivatives. The Skyrme
model includes another term, quadratic in derivatives, corresponding to the usual kinetic term
for the connection field ~Γµ. As the Skyrme model shows, this term leads also to solitonic
solutions, but to solitons with short range interactions. The Skyrme model is therefore accepted
as an approximation to QCD. As we want to describe long range Coulombic interactions we
have to avoid this kinetic term. According to the Hobart-Derrick theorem we have to include a
term with less than three derivatives and the only possibility left is a term without derivatives,
a potential term Λ as in Eq. (12). Solitons with properties of charges have fields extending up
to infinity. At infinity the potential term should contribute with its vacuum value only. The
only term left at infinity is therefore the kinetic term, quadratic in the field strengths. To get
non-vanishing derivatives of fields and a constant potential term we have to have degenerate
vacua. A good choice to allow for hedge-hog type solitons is a term Λ(q0) with even powers in
q0, schematically shown in Fig. 5, with potential minima at the equatorial sphere S2

equ,

Λ(q0) = q2m
0
r4

0
, m = 1, 2, 3, · · · . (13)

By dimensional reasons, to equilibrate the four derivatives in ~Rµν ~R
µν , this term has to include

the forth power of a scale parameter r0 which finally determines the size of solitons.
Like the cosmological constant in general relativity the term (13) has no derivatives. But in

distinction to the cosmological constant it is coordinate dependent, it contributes in the center
of solitons and does not contribute in the vacuum. One could call Λ(q0) a cosmological function.
If the universe would start in a state with Q = 1 and α = 0 one would expect an inflationary
transition to a vacuum state with α = π/2.
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Figure 5. Schematical drawing of the potential term Λ(q0) with even powers in q0 leading to a
two-fold degeneracy of the vacuum states at the equatorial S2

equ.

3. Single solitons and charge quantisation
After defining the Lagrangian (12) and specifying the potential (13) we are ready to derive the
equations of motion and to check whether there are long-range solitonic solutions. With an
hedge-hog ansatz we construct spherical symmetric solutions,

~n(x) = ~r

r
, α(x) = α(ρ), ρ = r/r0. (14)

For vacuum configurations α = π/2, Eq. (6) is reducing to the vector field of a dual Dirac
monopole in the Wu-Yang representation with

~Γµ = ~n× ∂µ~n. (15)

The original Dirac monopole [5, 6] has two types of singularities, the famous Dirac-string and
the singularity in the center. In the Wu-Yang representation of the Dirac monopole [7, 8] the
Dirac string is removed, but the singularity in the center is still present. With the ansatz (14)
we are able to remove also the singularity in the center.

Since there is no time dependence in the ansatz (14), we can use spherical coordinates r, ϑ, ϕ
and get from Eq. (6) for the connection field

~Γr = ∂ρα(ρ)~n, ~Γϑ = sinα [cosα~eθ + sinα~eφ] , ~Γϕ = sin θ sinα [cosα~eφ − sinα~eθ] , (16)

with ~eθ, ~eφ unit vectors in internal color space. With the diagonal, spherical metric gµν =
diag(1, l2r , l2ϑ, l2ϕ) and (lr, lϑ, lϕ) = (1, r, r sinϑ) we get the dual vector field

~Cr = − e0
4πε0c

~Γr
lr
, ~Cϑ = − e0

4πε0c

~Γϑ
lϑ
, ~Cϕ = − e0

4πε0c

~Γϕ
lϕ
. (17)

The non-vanishing field strength components read

~Er = − e0
4πε0

~Γϑ × ~Γϕ
r2 sinϑ = − e0

4πε0

sin2 α

r2 ~n,

~Eϑ = − e0
4πε0

~Γϕ × ~Γr
r sinϑ = − e0

4πε0

α′(r) sinα
r

(cosα~eθ + sinα~eφ),

~Eϕ = − e0
4πε0

~Γr × ~Γϑ
r

= − e0
4πε0

α′(r) sinα
r

(cosα~eφ − sinα~eθ).

(18)
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From the Lagrangian (12) follows the energy functional

H = He +Hp = αf~c
r0

∫ ∞
0

dρ
[

sin4 α

2ρ2 + (∂ρ cosα)2 + ρ2 cos2m α

]
(19)

and by its variation the non-linear differential equation

∂2
ρ cosα+ (1− cos2 α) cosα

ρ2 −mρ2 cos2m−1 α = 0 (20)

for cosα(ρ). For this equation analytic solutions are known for m = 2 and m = 3 [2, 9]. From
an aesthetic point of view the m = 3 solution looks nicer, it reads

α(ρ) = arctan ρ with ρ = r

r0
. (21)

The radial energy density, the integrand in the energy functional (19), has three contributions,

 0

 0.1

 0.2

 0  1  2  3  4  5  6

r/r0

radial energy densities

radial field
tangential field
potential field

Figure 6. Radial energy densities (22) for the solution (21) of the differential equation (20) for
m = 3.

h = αf~c
r0

[ ρ2

2(1 + ρ2)2 + ρ2

(1 + ρ2)3 + ρ2

(1 + ρ2)3

]
. (22)

Up to the constant factor in front of the bracket in Eq. (22) they are shown in Fig. (6). For
large distances the radial field decays with 1/r4 as expected for the energy density of the electric
field of a point charge. Due to the regularity of the solution the singularity of the electric field
of a point-like charge is removed. There is no singularity left. Two further terms contribute to
the energy density, a tangential term originating in the components ~Eϑ and ~Eϕ of the electric
field and a contribution from the potential energy Hp. For the solution (21) the latter two
contributions agree.
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The total energy of this single soliton solution reads

E1 = αf~c
r0

π

4 with αf~c = 1.44 MeV fm. (23)

Comparing this result with the energy of the lightest charge particle, the electron with a rest
energy of 0.511 MeV, we get r0 = 2.21 fm. This value is of the same order of magnitude as the
classical electron radius αf~c

mec2 = αf
~
mec

= 2.82 fm.
In the SI the scales for space, time, mass and charge are based on the requirement for a

coherent system of units. In a certain sense these scales are man-made and can’t be predicted
by a model, they can only be adjusted by a comparison to experimental values. The only para-
meters of the model, r0, c, ~ and αf , correspond to these four scales. They were adjusted to
the charge and the mass of the electron, the velocity of light and the dielectric constant of the
vacuum. Therefore, the elementary electric charge can’t be predicted. But, in distinction to
Maxwell’s electrodynamics this model predicts the quantisation of electric charge. Due to the
geometric restrictions fractional multiples of e0 can’t be realised by regular field distribution
of the SU(2)-field Q(x). There is no contradiction to the existence of quarks, since they never
appear as isolated particles.
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U
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u3

u1

S3 ← R3

Q(r)← r

Q
z

x,y

Figure 7. The field of rotational matrices Q(r) of spatial dreibeins maps R3 → S3. The center
of the soliton is mapped to the origin and spatial infinity to the equatorial S2

equ. The right
diagram indicates this map by arrows of length sinα(r) and direction ~n(r). A soliton covers
only half of S3. Points on the lower half of S3 are furthermore characterised by dashed arrows.

We succeeded to follow the idea of Fig. 3 to describe a rotational dislocation in R3 by assigning
to every coordinate triple r a rotational matrix Q(r), as shown in Fig. 7. A unit charge covers
a hemisphere of S3 only. To get a more precise picture of the field, Q(r) is symbolised in the
right diagram by arrows of length ~q(r) = sinα(r)~n(r). The center of the soliton is mapped
to the unit matrix and therefore a vector of length zero. Traversing the center of the soliton
along a line through the origin, Q(r) defines a continuous 2π rotation with positive chirality.
The rotational axis agrees with the direction of the line. In this sense the configuration is a
three-dimensional generalisation of the Sine-Gordon model with solitons defined by 2π rotations
between degenerate ground states. The ground states build a discrete set in the Sine-Gordon
model and a two-dimensional manifold in this model.

Releasing the condition ~n(x) = ~r
r and allowing for global rotations of soliton configurations

we can realise a continuum of soliton solutions for the Lagrangian (12). All these configurations
belong to the same homotopy class, they can be “continuously deformed” into each other. There
are four homotopy classes of SU(2)-field configurations. They differ by transformations with the
non-trivial center element z = −12 of SU(2), Q → −Q, or by parity transformation Πn in
internal space, ~n→ −~n. The far field of a soliton determines its interaction with other solitons
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Transf. 1 z Πn zΠn

~n ~r/r −~r/r -~r/r ~r/r
q0 ≥ 0 ≤ 0 ≥ 0 ≤ 0
Z 1 −1 −1 1

2Q 1 1 −1 −1

diagram

Table 1. There are four homotopy classes for soliton configurations. They differ by parity
transformations in colour space Πn : ~n → −~n and transformations with the non-trivial center
element z = −12 : Q → zQ. They can be characterised by the charge number Z and the
topological charge Q, defined in Eqs. (24) and (25). Length and direction of arrows depict the
value of the imaginary part ~q(x) = ~n sinα of the soliton field Q(x). The sign of q0 is indicated
by the line type of the arrow, full lines for q0 > 0 and dashed lines for q0 < 0.

and therefore its charge. For the far field we have cosα = 0, arrows have unit length and arrows
with full and dashed stem symbolise the same SU(2)-element on the equatorial S2

equ. There are
two possible coverings of S2

equ. As discussed in detail in refs. [2, 9, 10, 11] we can distinguish
them by choosing a closed surface S parametrised by coordinate lines u and v around the soliton
center and determining

Z(S) := − 1
4π

∮
S

dudv [∂u~n× ∂v~n]~n. (24)

Z(S) is the charge number of the soliton. It is obvious that Πn transformations change the sign
of Z. Configurations which are topological equivalent to a configuration with arrows pointing
outwards we have defined as the charge of an electron, i.e. a negative elementary charge, Z = −1,
arrows pointing inwards as positive, Z = +1. Now we are going to discuss in more detail the
spin properties which are related to the hemispheres of S3.

4. Spin properties
4.1. Spin as topological quantum number
From quantum mechanics we know that spin-1/2 particles appear in two spin states, usually
called spin-up and spin-down. Only one component of the spin-vector is measurable and this
component can have two values only, ±~

2 . By the interaction of a spin-1/2 particle with a
magnetic field the expectation value of the spin can be rotated in arbitrary direction. If we
would attribute in our model spin-up and spin-down states to the upper and lower hemisphere
of S3, this would contradict to the experiment, since field configurations on different hemispheres
are topological different, there is no continuous transition between them. This is the reason why,
as mentioned above, we have to attribute SO(3) and not SU(2) field configurations to the solitons.
Due to the double covering of SO(3) by SU(2), in SO(3) there is no upper and lower hemisphere,
there is no difference between ±Q(x) configurations. In this picture a single soliton in the
universe does not have a spin. Only by the interaction of solitons, the spin direction appears.
There are two possibilities to connect two spatially separated SO(3) configurations continuously,
a trivial connection and a non-trivial connection, see Fig. (8). The trivial connection reads in
the SU(2) language, that the two solitons occupy the same hemisphere of S3 and the non-trivial
configuration, that the two solitons occupy different hemispheres. Schematic arrow diagrams for
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these two configurations for opposite charges are depicted in Fig. 8. The number of coverings of

z z

Figure 8. Schematic arrow diagram for the field Q(r) and the electric field by blue (dashed)
lines for two opposite unit charges. The arrows with full stem represent values ~q = ~n sinα with
positive values of q0 = cosα, the dashed stems negative values of q0, i.e. π

2 ≤ α ≤ π. The left
configuration corresponds to a spin-zero and the right configuration to a spin-one state. The
electric field lines follow lines of constant ~n.

S3 is a conserved topological quantum number. This is one of the reasons we try now to describe
the spin quantum number s by this topological quantum number, the topological charge Q,

Q = 1
V (S3)

∫ ∞
0

dr
∫ π

0
dϑ
∫ 2π

0
dϕ~Γr(~Γϑ × ~Γϕ) with V (S3) =

∫
S2

d2n

∫ π

0
dα sin2 α = 2π2 (25)

and define
s = |Q| . (26)

The field configurations of single solitons, see Table 1, cover half of S3 and are therefore
characterised by s = 1/2. Such configurations are connected to the surrounding by the lines of
constant ~n-field. A 4π-rotation of the center of a soliton can be described by a big circle on S3.
Since this lasso around S3 can be contracted to a point, one can understand that by appropriate
movements of the constant ~n-lines the 4π-rotation is topological equivalent to no rotation. This
reflects the famous 4π-rotational invariance of spin-1/2 states.

Looking more carefully to the attractive two-soliton configurations of Fig. 8, one can imagine
that at spatial infinity all unit-arrows turn finally in positive z-direction for both configurations.
This indicates that the configurations are uncharged, as mentioned above. The spin properties
we can read off from the central structure of the configuration. We can attribute a chirality χ
to the soliton centers according to the sign of the topological charge and get

Q =: χs. (27)

Especially significant is the Q-field along the z-axis. We realise that in the left diagram with
s = 0 the soliton-field describes a left-handed rotation of the spatial dreibein for negative z-values
and a right-handed rotation for positive z-values. These opposite chiralities of the two solitons
we would describe in corresponding quantum mechanical configurations by opposite magnetic
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quantum numbers ms. In the right diagram of Fig. 8 we observe a complete 4π-rotation along
the z-axis as we expect for two parallel soliton spins adding up to s = 1. In the left, s = 0,
diagram the soliton field Q(r) at the center of mass r = 0 of the two-soliton system approaches
α = π/2 for large distances of the solitons only. Therefore this configuration does not cover the
full upper hemisphere twice. The energy of this configuration is thus lower than the energy of
the s = 1-state in the left diagram where we get exactly α(r = 0) = π/2 and the configuration
covers both hemispheres of S3 completely.

4.2. Spin as angular momentum
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Figure 9. The rotation of gears of equal radius is compared to rotations of solitons. If a light
gear rotates around a heavy (static) one, from the left to the upper diagram, the circulating
gear performs a 4π-rotation. Another possibility for two gears of equal weight would be a rigid
rotation, from the left to the lower diagram. Solitons circulate around as shown from left to
right.

Whereas in quantum mechanics mainly the su(2)-algebra and the SU(2)-representations are
important, the above discussion shows that in this model the manifold of the SU(2)-group and
its map to R3 is related to the spin properties. An essential property of spin we still didn’t
discuss, its contribution to angular momentum. In the static configurations of Fig. 8 nothing
contributes to the angular momentum. But as soon as the solitons start to move around each
other they have to rotate, they are connected to each other by the lines of constant ~n-field, like
gears. We can try to compare two unit charges to a pair of gears of equal size. If a heavy gear
is at rest, another light gear circulating around performs a 4π-rotation, see Fig. 9 from the left
to the upper diagram. For two gears of equal mass one would rather expect a rigid rotation,
from left to bottom. But gears are rigid bodies and solitons are not rigid. That solitons perform
a rigid rotation was a wrong assumption in ref. [9]. We are now going to discuss that solitons
circulate rather as shown in Fig. 9 from left to right.
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Figure 10. Two solitons with opposite charge and spin quantum number s = 1 rotating about
a common center of mass. Four rotational angles 0, π4 ,

π
2 and 3π

4 are shown from left to right and
top to bottom. This is not a rigid rotation. The line connecting the two soliton centers keeps
its ~n-value, ~n = (0, 0,−1) during the rotation.

For soliton configurations we have to take into account the boundary conditions defined by the
broken vacuum. In Fig. 8 we assumed a vacuum configuration with Q = −i~σ~n and ~n = (0, 0, 1).
This vacuum state has to remain unchanged during the rotation of the soliton pair. Therefore,
solitons can’t rotate like rigid bodies. In Fig. 10 a slow rotation of two solitons with opposite
charges and s = 1 is shown for rotational angles of 0, π4 ,

π
2 and 3π

4 . Along the line connecting the
two soliton centers the vector ~n keeps its direction ~n = (0, 0,−1) during the rotation. It follows
that there is an internal motion contributing to the total angular momentum. This two soliton
state returns after a 2π-rotation to the original state as it should be for integer spin states.
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4.3. Angular momentum components
We can treat αk = αnk as field variables of the SU(2)-field Q(x) in Eq. (4). The relations

∂L
∂∂µαk

∂ναk = ∂L
∂Γµk

Γνk (28)

allow to consider ~Γµ as generalised velocities and to derive from the Lagrange density (12)
generalised momenta

πµ = ∂L
∂~Γµ

= −αf~c4π
~Γν × ~Rµν . (29)

The canonical energy-momentum tensor

Θµ
ν(x) = ∂L(x)

∂(∂µαk)
∂ναk − L(x) δµν = ∂L(x)

∂~Γµ
~Γν − L(x) δµν (30)

turns out to be symmetric

Θµ
ν = −αf~c4π

~Rµσ ~Rνσ − L(x) δµν , (31)

a property important for the derivation of the angular momentum tensor. This is different to
classical electrodynamics where the canonical tensor is gauge dependent and asymmetric.

Global rotations of the soliton field modify the coordinates xi and the orientations αi of the
local dreibeins. This leads to expressions for the orbital angular momentum

Li = 1
c

∫
d3x εijkx

jΘ0k. (32)

and the spin

Si = −1
c

∫
d3x

( ∂L
∂∂0αl

εilkαk
)

=

= −1
c

∫
d3x~π0 sinα[cosα~n× ~ei + sinα~n× (~n× ~ei)].

(33)

Since the analytic solutions of two-soliton systems are not known, the determination of the
angular momentum contributions for classical paths can only be determined approximately or
numerically. This remains for future work.

5. Summary and outlook
Inspired by the success of the Sine-Gordon model to describe particles by topological solitons
of a bosonic field, we tried a generalisation from 1+1D to 3+1D from 1 rotational angle to 3
rotational angles. Since three rotational angles describe rotations in a three-dimensional space,
there is the possibility to interpret these rotations as rotations of spatial dreibeins. This leads to
the tempting picture that both long-range interactions, gravitation and electromagnetism can
be explained by properties of space-time, i.e. using exclusively space and time coordinates. It is
an interesting question how far we can drive this idea and where discrepancies to experimental
facts get obvious.

Let me enumerate some successes, limitations and open questions.
We describe charges by local dreibeins rotating by 2π along lines crossing the charge centers.
Fields of single solitons are connected to the surrounding by lines of constant ~n-field. Rotating
soliton cores can therefore recover the original configurations only after a 4π-rotations. This
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indicates the fermionic character of such solitons. By an appropriate Lagrangian solitons are
topological stable field configurations which survive scattering processes. Due to the topological
character charge is quantised. Such a quantisation is already known from Dirac monopoles.
Actually the solitons of this model are dual Dirac monopoles where the two types of singularities
of Dirac monopoles were removed. The Dirac string is removed by a transition from the
vector potential Aµ to the a three dimensional unit vector field ~n and the singularity in the
monopole center is avoided by the transition to an SU(2) field Q. To the author it appears
as a nice aspect that in the dual formulation static charges are described by the purely spatial
components of the dual field strength tensor (10) whereas “moving” currents lead to the space-
time components of the ? ~Fµν and the curvature tensor ~Rµν . In classical electrodynamics we
find just the opposite correspondence, moving currents are described by static fields and static
charges by time components of the fields.

The term quadratic in the field-strength of the Lagrangian (12) seems more natural than
the potential term Λ. Nevertheless, such a Λ-term is known from gravitational theory as the
cosmological constant. In this model Λ is a cosmological function. One could try to relate the
transition from a state with Q = 1 and constant Λ = 1/r4

0 to Λ = 0 to inflation known from
cosmology and gets a release of energy density of αf~c(4πr4

0) = 4.8 keV/fm3. The potential
term leads to a two-fold degeneracy of the vacuum states. Due to the broken symmetry there
are two massless Goldstone bosons described by the ~n-component of dreibein rotations. This
gives the possibility to interpret photons as Goldstone bosons of rotational symmetry breaking
of the vacuum. Lines of constant ~n-field can be seen as fibres of a Hopf map from S3 (R3 with
broken vacuum) to S2. One could try to follow the conjecture that the Hopf index of this map
agrees with the photon number.

The far field of a single soliton, the field ~n covers S2 once. The two possible topological
different coverings determine the sign of the unit charge ±e0. In this far field limit there is left
a rotational invariance around the direction of the ~n-field, leading to a U(1) gauge invariance
of the dual vector potential Cµ and the dual field strength tensor ?Fµν ; in this limit both are
reduced to one-component fields in internal space as expected for a U(1)-gauge theory. In
this model charges and fields are described by the same field Q(x). An artificial separation of
solitons and their fields allows to derive the appearance of Coulomb and Lorentz forces. The
internal structure of a soliton can be further characterised by the sign of the topological charge
Q = ±1/2, we called it chirality. The absolute value of Q can be interpreted as spin quantum
number s. The angular momentum property of spin appears in this model only for solitons in
orbital motion.

The solitons show all the properties expected for charged particles in a fully relativistic model.
The mass of the particles is field energy. Particles experience Lorentz contraction and relativistic
mass increase. Moving particles lead to magnetic fields as expected from Lorentz transformations
of the electric field. Solitons at rest have a finite size comparable to the classical electron radius.
Since they have no real substructure, in central collisions in high energy scattering processes
they are expected to be compressed to nearly point-like objects like the Sine-Gordon solitons.

This article investigates on a classical level solitonic excitations of space-time and compares
basic properties, like mass, charge and spin of such solitons with particle properties. Quantum
fluctuations were not included in these investigations. An appealing method to go beyond the
classical behaviour could possibly be indicated by the silicon oil drop experiments of Yves Couder
and his group [12]. In these experiments a classical particle interacts with a wave-field which
results from a superposition of an external field and the field created by the particle. Under
appropriate conditions this resulting pilot-wave field leads to interference [13], tunnelling [14]
and spontaneous quantisation of closed orbits [15]. Transferring this experience to solitons would
mean that particles on their classical path are disturbed by, and interacting with, a subquantum
medium. Such a medium must not transfer energy and momentum by friction. Deceleration by

EmQM13: Emergent Quantum Mechanics 2013 IOP Publishing
Journal of Physics: Conference Series 504 (2014) 012010 doi:10.1088/1742-6596/504/1/012010

14



friction processes can only be avoided by a medium propagating with the speed of light which
does not prefer special reference systems. Further, to get interference phenomena with classical
solitons resonance processes between the subquantum medium and solitons could be essential.
Since solitons are extended objects one could imagine that they select and interact with certain
frequencies from a wave-field.

Due to the low number of degrees of freedom electromagnetic fields are more restricted than
in classical electrodynamics. On the other hand besides solutions of the Maxwell equations
there is a possibility for non-vanishing non-quantised magnetic currents [10, 11]. Further one
can expect α-waves propagating through the vacuum [16]. These presently unknown excitations
one can try to shift to the subquantum medium.

Finally one can ask about strong and weak interactions. It is obvious that to include these
interactions in the model an extension by further field degrees of freedom is necessary. If
one adheres to the idea that the fields are properties of space-time this would lead to further
dimensions which would be hidden inside of strongly interacting particles.
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