News
Vacuum Landscaping: Cause of Nonlocal Influences without Signaling
In the quest for an understanding of nonlocality with respect to an appropriate ontology, we propose a “cosmological solution”. We assume that from the beginning of the universe each point in space has been the location of a scalar field representing a zero-point vacuum energy that nonlocally vibrates at a vast range of different frequencies across the whole universe. A quantum, then, is a nonequilibrium steady state in the form of a “bouncer” coupled resonantly to one of those (particle type dependent) frequencies, in remote analogy to the bouncing oil drops on an oscillating oil bath as in Couder’s experiments. A major difference to the latter analogy is given by the nonlocal nature of the vacuum oscillations. We show with the examples of double- and n-slit interference that the assumed nonlocality of the distribution functions alone suffices to derive the de Broglie–Bohm guiding equation for N particles with otherwise purely classical means. In our model, no influences from configuration space are required, as everything can be described in 3-space. Importantly, the setting up of an experimental arrangement limits and shapes the forward and osmotic contributions and is described as vacuum landscaping. View Full-Text / Download Paper
By Gerhard Grössing, Siegfried Fussy, Johannes Mesa Pascasio and Herbert Schwabl
This abstract belongs to an article of the Special Issue "Emergent Quantum Mechanics – David Bohm Centennial Perspectives"
Visit EmQM17 symposium page